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Abstract

Multiple Model Adaptive Estimation (MMAE) is a method of estimating unknown system

parameters by modeling all possible parameter configurations in several models. The parameters for

this research are failure status conditions associated with flight control actuators and sensors on the

LAMBDA Unmanned Research Vehicle, an experimental aircraft operated by Wright Laboratory

Flight Controls Division, Flight Controls Techniques Branch at Wright-Patterson Air Force Base,

Ohio. Six actuator failures and eight sensor failures are modeled, along with the fully functional

aircraft, in fifteen elemental Kalman filters. These filters propagate and update their own aircraft

state estimates in real time. A probability computation representing the likelihood of each elemental

fiter's match to the true condition of the aircraft is used to generate relative probabilities for each

filter's hypothesis. In this research, the MMAE algorithm is extended for the identification of

dual failures through the use of a hierarchical structure of filter banks. The ability of the MMAE

to identify dual failures in the face of wind gust uncertainty and sensor noise is investigated.

Aircraft state excitation is required for effective MMAE performance. Therefore, the form of

an optimal input dither signal is derived through extensive experimentation. Dither signals are

applied to the command inputs of a Quantitative Feedback Theory (QFT) flight control system

which controls pitch rate, roll rate, and sideslip angle. In particular, the MMAE performance is

studied as sinusoidal dither inputs are varied in frequency and magnitude. An analysis of tuning

techniques for the elemental filters within the MMAE is presented. The monitoring of scalar

residuals associated with controlled aircraft states is presentA with respect to its effect on MMAE

performance.
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Multiple Model Adaptive Estimation Applied to the LAMBDA URV

for Failure Detection and Identification.

I. Introduction

The problem of fault detection and isolation in aircraft control systems has been and will

continue to be a major engineering challenge. The engineer is faced with a delicate balancing act.

He is constantly trading effectiveness for simplicity and exchanging redundancy for weight savings.

The subject of this thesis will, when developed, become a key tool in the design of aircraft that

will push performance beyond what is conceived as possible today. The multiple model adaptive

estimation algorithm has the potential to replace many redundant aircraft components that require

space and consume energy. It would be highly desirable to exchange those components for a small

portion of computer resources allocated to running a fault detection algorithm.

In this thesis, Multiple Model Adaptive Estimation (MMAE) is being applied to failure de-

tection and isolation in sensors and flight control actuators. Specifically, a multiple model adaptive

estimation algorithm is employed to detect these failures on the LAMBDA URV (Unm-nned Re-

search Vehicle) as simulated in a computer model. The MMAE algorithmic structure is shown in

Figure 1.1. The measurement, z, and knowledge of the control input are presented to each Kalman

filter in the active bank of Kalman filters which, in turn, produce their own unique state estimates,

xi, and residuals, rk. The residuals are combined to form probabilities of correctness, PJ, associ-

ated with each filter. These probabilities weight the individual state estimates appropriately and

their sum is the probability-weighted average MMAE state estimate.

Several failures will be synthesized in a truth model to produce a database of control inputs

and sensor measurements. The MMAE algorithm will employ a bank of Kalman filters, each driven

by a model which simulates one of the possible failed conditions. Expected measurements from

each Kalman filter will be compared with the database of true measurements. Then the filter with

the best match between expected and true measurements is declared to correspond to the model

that mirrors the truth model.

1-1



Ax

8p 1

I -

gal K ----

WyPI

Figure 1.1 Multiple Model Filtering Algorithm. Reproduced from [l1-p.1 3 2].

Our first objective is to build on the work of Capt Peter Hanlon [3] by extending the single

failure isolation that he accomplished to dual failure isolation. The second objective of equal

importance is to find and develop optimum test inputs known as dithers. Dithering is required to

excite the dynamic responses of the aircraft system so that the measurements of these responses

may be analyzed by the MMAE algorithm. Thus, an optimum dither pattern will enhance the

detection and isolation performance of the MMAE algorithm.

1.1 Prob~em Staztement

The problem at hand centers on the automatic detection of and compensation for failed

control surface authority and fi t data sensor degradation. The situation arises as a result of

aircraft battle damage or in-flight equipment malfunction. Although the results of such failures

will often be catastrophic with high performance aircraft, there are some configurations of failures

that would allow the aircraft to continue flying if only a controller designed for that specific situation

1-2



were put on-line. A solution to this problem will automatically and correctly identify the failed

component(s) and select the proper controller. In this thesis we will apply the Multiple Model

Adaptive Estimation algorithm to the problem of failure detection and isolation.

Multiple Model Adaptive Estimation is an algorithm used to estimate states and parameters

in a dynamic system [11]. Parameters are quantities that describe the constrained physical char-

acteristics of the system and are usually constant over a short range of time. The dynamic states

which do vary appreciably over this short time are estimated using a Kalman filter designed around

a mathematical model which holds the parameters as true constants. In the real world, parameters

themselves have dynamic properties. However, they vary so slowly that their values are taken to be

constant when discussing the behavior of the dynamic states. While Kalman filtering estimates the

values of dynamic states assuming known parameter values, MMAE seeks to identify the changes in

parameters as well. Numerous techniques have been developed to identify parameters in dynamic

systems of all types. Many of these rely on schemes to converge upon a parameter value by seeking

out the true value whatever it may be. The computational cost of theses methods is high. On

the other hand, MMAE presents a refined set of hypothesized parameter possibilities and attempts

to match measurements taken from the true system to measurements predicted by one of these

possibilities.

1.2 Continuation of AFIT Research

In 1992, Capt Hanlon completed his thesis on the application of MMAE to the LAMBDA URV

[3]. He established the validity of previously established MMAE characteristics for single failures

[15, 19, 21, 22] and improved the algorithm for quicker and more decisive convergence. A major

obstacle for Hanlon was that the LAMBDA model he used did not have a closed loop controller

(see Appendix A for a description of the LAMBDA URV). Therefore, the automatic feedback that

would normally provide continuous correction inputs did not exist. Since the open-loop system is

unstable, this made the failure identification problem much more challenging.

Our work in this thesis, the second application of MMAE to the LAMBDA, differs from

Hanlon's in a few significant areas. The first two concern the LAMBDA model. The remaining

differences are in research objectives which, of course, aim to build on the previous work.

1-3



1.2.1 Updated LAMBDA state space model from Wright Laboratories. Data collected

from recent flight tests has led to the development of a more accurate state space representation

of the LAMBDA URV [26]. Stability derivatives used in the LAMBDA model for this research are

closer representations of its true dynamic behavior than those used in Hanlon's work and are listed

in Tables A.1 and A.2. A new state space LAMBDA model [26] representing both longitudinal

and lateral dynamics was obtained from Capt S. Sheldon of the Wright Laboratory Flight Controls

Division, Flight Controls Techniques Branch. This model is discussed in Subsection 3.2.1.

1.2.2 Closed Loop Controller. A robust dosed loop controller has been obtained from

Wright Laboratories. This controller is the result of a Quantitative Feedback Theory (QFT) design

[26] and is implemented in low order difference equations found in Appendix C. The command

inputs are pitch rate, roll rate, and sideslip angle. Prefilters, rate feedback, and cascade compen-

sators are used in each of the control loops. A washout filter is included in the yaw rate feedback

loop. A more thorough presentation and diagram are found in Subsection 3.2.2.

1.2.3 Dither Technique. In order for an MMAE algorithm to identify failures in a dynamic

system, the modes of that system must be excited. Only when known inputs are allowed to provoke

a response is the algorithm able to determine if a degradation in control authority or sensing

capability has occurred. This known input is called a dither input.

A primary goal of this research is to find an optimal input dither technique. Optimal is

defined in this case to be a balance between system identification and subliminality. The latter

quality refers to our desire to keep the magnitude of the dither's dynamic response so low that the

pilot is unaware that his aircraft is undergoing an automatic test.

Hanlon found that the best dither had frequency characteristics in consonance with the natural

mo, - of the aircraft. He studied the eigenvalues of the continuous time model to arrive at an

effective oscillation frequency [3:p.36]. The present research will build on his work by testing other

dither formats. These will include sine waves, doublets, and triangle waves. Concentration will be

on defining the optimal magnitude and frequency of sine wave dithers.

1.2.4 Dual Failure Detection and Identification. Previous work with the LAMBDA model

concluded that MMAE was effective at isolating single failures. The present research aims to prove
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that a hierarchical MMAE structure [14, 15, 16, 17, 21, 22] is effective in identifying dual failures.

The machinations of MMAE are the same, the real difference lies in the initial failure hypothesis.

With single failure detection, the initial hypothesis is always a fully functional system. The MMAE

filter bank consists of filters which hypothesize either a fully functional system or only one failure.

The dual failure hierarchy will start the same way. In addition, once a single failure is identified,

the system re-initializes with the single failure hypothesis filter as the initial hypothesis. The bank

of on-line filters changes to those that hypothesize either only that single failure or two failures,

one of which is the first failure that has already been detected. In addition, a fully functional filter

is kept on-line in case of a mis-identification of the first declared failure. This allows the algorithm

to revert to the condition in which the initial hypothesis is a fully functional system. Such a

case is described more fully in Subsection 5.3. Research will demonstrate the MMAE algorithm is

convergent to the correct dual failure status and will portray the time required to make the correct

failure declaration.

1.3 MMAE Background

In the introduction, the reader was given a general description of what Multiple Model Adap-

tive Estimation is and how it is applied to our problem. Here we will establish the mathematical

basis for a multiple model algorithm. However, the research of this thesis is not limited to the

mathematical development. Important terms and concepts are defined presently so that the reader

may have a more thorough understanding of why they are altered to suit our research.

1.3.1 Kalman Filter Equations. A thorough understanding of the Kalman filter update

and propagation equations is an essential background for the reader. For reference, the equations are

restated here. Consider the continuous linear system represented by the linear stochastic difference

equation with state vector x ý.-d control input vector u.

x(t4 +,) = *(k-+, , t.)X(4-) + Bd(t.)u(t-) + Gd(t)w,,,(t) (1.1)

and the discrete time measurements modeled by

z(t,) = H(ti)x(t.) + v(t,) (1.2)

1-6



Sans serif font is used for x, wd, z, and v to denote the fact that these are random processes

as opposed to real-valued variables, which are expressed in Times Roman font. wd(td) and v(t.)

are zero-mean white Gaussian noise processes that are independent of each other and that have

covariance kernels given by

E{W=(ti)WT (t,)l Qd(tixsj (1.3)

Em )v T om = R.(t.)L, (1.4)

where 6,i is the Kronecker delta, defined to be one if its subscripts are the same and zero otherwise.

R(tQ) is positive definite for all tk. Qj(t,) is positive semidefinite and related to Q and G of the

continuous-time model by [10:p.1711:

tw~

Qdt)= (1.5)

This underlying continuous-time model for which Equation (1.1) is an equivalent discrete-time

model is given by

i(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (1.6)

where w(t) is zero-mean white Gaussian noise with covariance kernel:

E{w(t)wT (t + r)j = Q(t)O('r) (1.7)

where 6(-r) is the Dirac delta function. The state transition matrix f(ti+1 , t.) in Equations (1.1)

and (1.5) is the solution to

4(t,t) = F(t)*(t,t) (1.8)

f(ti,ti) = I (1.9)

The optimal state estimate at time t, before incorporating the measurement at that time

is denoted by i(tq), while the corresponding estimate after the measurement update is denoted

by i(tt). The state estimate and its covariance matrix, P(ti-), have initial conditions iO and Po

at time to and are propagated forward from time t,_ 1 to time t, by the discrete time propagation
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equtions [10:pp.l71-172]:

i *( =t(,tj_,)•tjJ + B.I(k_,)u(k_,) (1.10)

P(tq) = *(t,, •sP•+4 tk,-_,) + Gd(t.-s)Q.•(-td_)G(;4 -s.) (1.11)

where B, is related to the input transformation matrix B of the continuous-time model, Equa-

tion (1.6), by [10:p.171]:

Bd(t.) = *(ti+,, r)B(,)dr (1.12)

Finally, because the discrete time model of Equation (1.1) is derived from a continuous-time model

[10:p.175]

Gd(Q)- I (1.13)

The propagated optimal state estimate and its covariance matrix are then updated with

information from the current measurement zi weighted according to a Kalman filter gain K(tj).

The apdae equations are [10:p.217]:

K(t.) = P(t.)HT (t) [ t(t)H T(t) + R(t.)] (1.14)

i(t,+) = ift.) + K(Q•i) (, - H(4)i(t.) (1.15)

P(t,+) = P(t;) - K(t1)H(t.)P(t;) (1.16)

1.3.2 Development of the Multiple Model Adaptive Estimation Algorithm. The problem

addressed by multiple model filtering model is that of developing a state estimate and parameter

estimate, given a time history of measurements and applied control inputs. The system dynamics

are modeled by a linear stochastic difference equation as in Equation (1.1) and the available mea-

surements are modeled as in Equation (1.2). A vector, a, of uncertain parameters in the model

may have an impact on any or all of 4, Bd, H, Q, and R. In this research, a is a scalar and its

discrete point values are associated with the specific failure status of the vehicle.

Our objective is to find a hypothesis conditional probability p5(tj) that will give an indication

of how well a model based on parameter vector value a, matches the measurements produced by a
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system based on parameter vector aj. If k - j, the probability should ideally be 1. More generally,

we want to know the probability that the uncertain parameter a assumes the value a&, given a

measum history up to the current time ti:

p(h) - prob{a = %IIZ(t) = Z4} (1.1)

where Z(t.) is the history of m rements of the form given by Equation (1.2) up to time t,:

Z(t,)

z(t,)z(I =(1.18)

z (t4 )]J

When the meur random process takes on a realised value, the time history of measurements

becomes known implicitly and is represented by

X1

z, = (1.19)

Since we are going to define an on-line algorithm, we would like the expression for p&(t.) to be

recursive: the current calculation is based only on the results of the prior sample time and the new

inputs at the current time. A development given in [11:pp.129-132] results in

fz(,,)Ia,Z(I,,_)(zlj la, Z,_,)p,(t 4_) (1.20)

where s, is the actual realization of measurements at time t.. Equation (1.20) is a recursive

expression. We need only to resolve expressions for the probability densities. The probability of

realizing measurement z. at time t,, given that we already have a history of measurements through
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time 4-1, Zi- 1, and we ae considering only ome anumed value of the vector of parameters, a:

1't)UZS )(I'Z,_,) = (2r' 2 A(t)' m {-} (1.2e1)

The residuals, rk, are the differences between actual measurements and predicted m e ements in

a Kalman filter based on the assumed parameter value a1 :

r,(ti) = s(t,) - H1,(t,)*,(t) (1.23)

where the superscript '-' on t;" denotes the instant in time before the Kalman filter update occurs.

The residuals are easily computed from the incoming measure nts, s(td), and the state estimate

which is produced by that Kalman filter. The residual is anticipated to have covariance A& which

is calculated as in Equation (1.24):

A, = H,%P;T + RB (1.24)

where Pk is the steady state value of P,(t,').

1.3.3 Beta Dominance. The leading coefficient of the probability density function given

by Equation (1.21) is a scaling term. Known as the # term, its function is to make the area under

the density function equal to unity. Note in particular that the one-half power of the determinant of

the residual covariance matrix, IA 1 l, is a multiplier on the probability. The probability associated

with elemental filter k depends on the magnitude of IAsI for that elemental filter. The problem is
that IlA,,I tends to be small for filters based on the assumption of a sensor failure because a total

sensor failure manifests itself as a row of seros in the H matrix. Since A& is given by Equation (1.24),

this would result in a smaller than usual residual covariance associated with that failed sensor filter.

If the terms given by Equation (1.22) were the same for all elemental filters in the MMAE (i.e., for

all k), one would desire all a& values to be declared equally likely. However, under these conditions,

the P term will cause higher ps values to be associated with those hypotheses that correspond to
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lower IA* values. Thus, false alarms on sensor failures are more likely to result. This effect is

called P dominance.

In fact, it has been proven that false alarms on sensor failures do result when a probability

density of the form given by Equation (1.21) is used [3, 12, 14, 15, 16, 1T, 21]. Therefore, in

our research, P dominance will be avoided from the onset by eliminating altogether the leading

coefficient in Equation (1.21), as suggested and evaluated by [3, 12, 14, 15, 16, 17, 21].

1.3.4 Scalar Residual Monitoring. Probabilities generated by the MMAE algorithm give

a sense of relative "correctness" associated with each elemental filter. Very often the situation will

arise in which two filters may have probabilities that are nearly equal, even though only one is the

correct filter. This confounds the identification process and unless more information is obtained,

two filters will improperly share recognition as the correct filter.

Each probability is developed from the sum of products of scalar residuals. The term

r•T(t)A, 1 (t)rs(t.) in Equation (1.22) may be broken down into its scalar components to gain

more insight into exactly which scalar measurement does not agree with a filter-predicted measure-

ment. This can be used to enhance isolation of individual sensor failures. Consider the following

example system resulting from a three element residual:

r =r2 (1.25)

r3

An expansion in scalar components yields

r A`1  Aj2  A- ,
rt(ti)A 1 (t,)rk(ti) [2 22 23  (1.26)

= 1
1 + r2A 1 +2 'A2 3 + (1.27)

2rlr 2A- 1 + 2rlr 3A- + 2r 2raA- 1

1-10



Note that a large single element of r has the same effect on probability as moderate magnitudes

of all elements of r (see Equations (1.22), (1.21), and (1.20)). Also, recall that r~'()A 1 (t,()

is simply scaled to generate {.} in Equation (1.22).

Residual monitoring is a means of capitalizing on the large quick changes in a single scalar

element of r% while the remaining elements exhibit their previous average characteristics. This

technique is most effective in identifying sensor failures. A functional sensor's measurement is

characterized by a non-zero dynamic mean (due to the useful signal) with sensor noise added.

Upon failure, the mean will go to zero or some constant bias. At that time the Kalman filter

continues to estimate the sensor state based upon its internal model and prior measurements. This

estimate will vary significantly from the current measurement which is based on nothing but noise.

Hence, a large step change will be seen in the residual (if the prior measurements were not near

zero). The Kalman filter will continue to present state estimates based in part on the internal

model which is responding to the applied dither. As time goes on, predicted measurements from

the Kalman filter are being subtracted from zero-mean nuise to form the scalar residual which, in

turn, oscillates according to this dither.

Scalar residual monitoring is useful in the following situation. Assume that there is some

ambiguity about whether sensor j has failed. There are two techniques available to resolve this

ambiguity. (1) Look at the scalar residual for sensor j in any elemental filter ezcept that which

assumes a failed sensor j. If that scalar residual is bigger than anticipated, we have corroborating

evidence that sensor j has failed. (2) If the scalar residual for sensor j in the filter that does

assume sensor j has failed is bigger than anticipated, we have a corroborating vote that sensor j

has not failed. Additionally, keep in mind that if the hypothesis of an elemental filter is correct,

all scalar residuals in that filter should be white and zero-mean. However, if the hypothesis is

wrong, the dither applied to the system will appear in the residuals because of the effect on the

true measurements. These residuals are not properly compensated by the estimated measurement,

Hk(t,)*A(t ), in Equation (1.23), as noted before. Such signals are readily detected and useful for

hypothesis testing decisions.

Thus, the behavior of a single scalar element of r provides insight beyond the information

found in the scalar quantity rT(t1)A-(t.)rs(tQ) alone. If the behavior of scalar residuals were
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studied, insight such as this could help to design an algorithm that converges quickly to a correct

failure identification while the MMAE algorithm is only able to resolve the failure to two possible

failures.

1.3.5 Filter Tuning. There are two opposing forces in the design of the Kalman filters

used in the MMAE scheme. The first is that, as engineers, we want to limit the number of failure

status possibilities. This means that we want a coarsely discretized parameter space. The other

force is our desire to estimate the degree to which a failure has occurred. A finely discretized

parameter space would serve our purposes here. The link between a modeled point in parameter

space and an unmodeled point in parameter space is made by tuning the Kalman filter associated

with the modeled point.

We would like to have the MMAE algorithm declare an elevator actuator failure (or, even

better, a partial failure) even if it is still 10, 50, or even 75 percent effective. On the other hand,

we don't want the algorithm to identify a pitch rate sensor failure falsely when the true failure is

on an elevator actuator. The balance is struck by carefully tuning each Kalman filter with respect

to all others.

Another feature of the MMAE algorithm is the ability to blend failure hypotheses by weight-

ing individual filter states according to their respective MMAE filter probabilities. Rather than

finely discretising the parameter space to allow a range of partial failures to be hypothesized in

various elemental filters as described above, partial failures may be detected with a coarsely defined

parameter space coupled with this blending action. For instance, the MMAE might model only the

fully functional aircraft and fdlly failed sensors or actuators, and by placing substantial probability

weight on the fully functional aircraft filter and the fully failed elevator filter, it could correctly

indicate a certain percentage loss of that actuator. With this approach, both advantages of finding

the degree of failure and of employing the least number of filters are realized.

1.4 Hierarchical Modeling Structure

The MMAE is capable of identifying only a limited number of failures. This limit is tied

directly to the number of on-line filters. If a failure occurs which is not modeled in an on-line filter,

the MMAE algorithm will not identify it, though it may indicate that some failure did occur.
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We wish to identify the failure status of K = 14 individual components in our research. If

we sought to identify single failures, only K + 1 or 15 filters would be required to remain on-line.

That is, we would run one filter for each hypothesized failure plus one filter for the fully functional

aircraft hypothesis. Identification of multiple failures requires individual Kalman filters for each

combination of possible failures. Our research is limited to dual failures, which would require the

generation of 1 + K + K!/((K - 2)!2!) or 106 filters representing no failure, single failures, and dual

failures.

Even though 106 possibilities exist, we must limit the number of filters kept on-line at any

given time. The overriding factor is that 106 Kalman filters running simultaneously will require

computational power beyond conceivable capacity. A second factor is that probabilities generated

by MMAE are shared between the on-line filters. The more filters there are on-line, the more the

probabilities are "watered down". This makes convergence to one filter hypothesis less likely. The

solution is to utilize a hierarchical structure of filter banks.

The hierarchical bank structure features one bank of active filters and several banks on

standby, ready to be loaded into the processor and brought on-line at any time. See Figure 1.2.

The initial on-line bank at Level 0 includes the fully functional filter and all single failure filters.

Filters at Level 0 remain active as long as the MMAE-generated probability remains with the fully

functional filter. Upon detection of a single failure, the MMAE probability shifts to the single

failure filter corresponding to that failure. All other single failure filters are removed and a new

bank of double failure filters is loaded and activated. The new bank includes only those dual failure

filters that represe the failure already detected plus one more failure. The fully functional filter

remains on-line as a back-tracking path in case of a false initial failure identification. The single

failure filter for the initial failure also remains on-line and carries the highest probability until a

second failure occurs. At this point, the probability shifts to the corresponding dual failure filter.

For our purposes of detecting and identifying only two failures, no new bank is loaded to look for

a third failure.

1-13



Level 0 Level 1

Libmn fiK ahnm fih
busodea bommda

PoNY flucdoma mom dd homm ftd modd

Kahnu Abor Kaoka= fibor
boedm Bank 1 bed m

eft ha: mob m thime W Abkem au Mire

Xkim 1fo Kaknon film boned
boed am > Bank2 rA age= W a=

ftht borz stab ad faiure ad left kz sub act fWhu

Kahumatu r ~ nk Klimo MW bond on
baed an railsbt smaactfihiem

right daim ocu f•2tih and d b-z mb Nab ftflbm

KalmaI fltfr Xahn. fiker bond on
bond an Bank 14 right aflerom o lim

yaw rate s mmr failure ad yaw lite amor fakhe

Figure 1.2 Hierarchical Multiple MoLel Filtering Structure.

1.5 Research Objectives

There are two primary objectives to this research. One is to develop a dithering technique that

satisfies specifications of subliminality and of sufficient system excitation for failure identification.

The other is to prove that a hierarchical structure is capable of isolating at least two failures

correctly, without false alarms, and in minimal time. Before pressing on to these objectives, we

must re-verify the results of Hanlon's work [3] in light of the differc-ces discussed in Sections 1.2.1

and 1.2.2 concerning the updated LAMBDA model and the addition of a closed loop controller.

Specific research questions are posed in italics.

1.5.1 Develop Best Dither. As mentioned in Section 1.2.3, the ability of the MMAE

algorithm to identify specific failures is directly related to the method used to excite the dynamic

modes of the aircraft.
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Whet is the form of the dither input the causes the quicsest convergence of tde MMAB

agorithm to a correct failure hypothesi•?

The speed of detection is emphasized here but a correct failure hypothesis must be reached

without false alarms or missed alarms, if possible.

What magnitude of lateral and vertical g-forces would be considered to be "subibminal' to the

aircrew?

The subliminality of g-forces is a subjective issue. A real answer to this question is found

through physiological research to determine a human's sensitivity to g-forces. This thesis does

not intend to address such questions as, "What magnitude of g-forces are noticeable?", or "What

magnitude of 9-forces are annoying?" Therefore, the subliminality question has been addressed

strictly through library research [1, 15, 20].

What is the best balance between aubliminalist and failure identification time?

The magnitude of dither inputs is bounded on the low side by failure identification time

constraints and on the high side by subliminality constraints. Hopefully, we will find that the low

bound is lower than the high bound. If not, an intelligent trade-off must be made.

What format of dither input will provide the best overall performance in terms of failure

protection, aircrew convenience, and comfort?

Three formats are suggested: (1) Automatically induced dither input. This is the ideal format.

There is no aircrew awareness or intervention and continuous failure protection is provided. (2) Pilot

turn-on and turn-off of automatic dithering system. Continuous protection is not provided, but

this may be a valid alternative if we find that the minirmum dither required for failure identification

is much greater that the maximum subliminal dither. Under such conditions, a pilot would want

the option of being able to turn the dither off for certain periods of time. (3) Pilot-induced routine.

Engineering studies produce an input signal that is generated in flight by the pilot moving the

stick and rudder peddles. The advantage here is that the pilot always has complete control of his

aircraft, without the "disturbance" of an externally generated dither. The disadvantage is that

continuous failure protection is not provided.

1-15



1.5.2 Proof of Hierarchical Concept. In Section 1.4, the hierarchical concept was devel-

oped as a strategy of detecting and isolating up to two failures. Our goal is to prove that this

concept is valid and that it works under conditions of noisy measurement signals and wind gust

turbulence.

Does the MMAE hierarchical-structured failure detection algorithm converge to the correct

dud failure hypothesis?

Does the algorithm converge to the correct dual failure hyotheui quickly enough to prevent

incorrect failure hypotheses declarations or severely degraded control of the aircraft?

It is desired that the algorithm converge to some dual failure hypothesis under all dual failure

conditions. Moreover, it should converge to the correct dual failure hypothesis to be of any value.

Our research is intended to show that, regardless of type or order of two failure occurrences, the

algorithm is able to identify those failures without false alarms.

Is the algorithm's performance path-dependent for the identification of simultaneous dud fail-

ure•?

It is true that some specific types of failures are more readily identified than others [3, 15,

19, 21]. In the case of simultaneous or near simultaneous failures, the hierarchical structure will

force the algorithm to identify a single failure first, then identify the second failure. We will find

out if this logical structure degrades the algorithm's performance in the face of many combinations

of dual failures.

1.6 Scope of Research

All research will be done through computer simulation. This is valid since the MMAE algo-

rithm will be implemented in a digital processor once fielded. Also, the updated LAMBDA model

will give excellent representation of the aircraft's dynamics in a digital simulation.

The software tool for this research is an amalgamation of Menke's software and Hanlon's

software used in their theses, [15] and [3], respectively. Menke's hierarchically structured software

will be used to implement the dual failure scheme. Hanlon's MMAE software will implement the

MMAE algorithm inside of the hierarchical structure.
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The aircraft dynamics will be simulated in a state space format in MATLAB [8] to generate

truth model simulation data. This will generate a measurement time history vector and a control

input time history vector. These vectors will be sent to the MMAE software system, which is

implemented in FORTRAN. The Kalman filters of the MMAE system will have discrete-time,

somewhat reduced-order versions of the LAMBDA model embedded within their structure in order

to propagate estimates from one sample time to the next.

The aircraft equations of motion are linearized about a nominal flight conditions given in

Table 1.1. These conditions represent the LAMBDA in level c•uise, a condition where dither

inputs would be required to excite the aircraft dynamics for good MMAE performance. Second

Table 1.1 Nominal Flight Conditions.

Parameter Symbol Value Units
Trim Velocity U0  169 feet/second
Weight mg 200 pounds
Center of Gravity X.9 46.8 inches
Pitch Angle 00 0 degrees
Dynamic Pressure Q 30.43 pounds/feet 2

order actuator dynamics will be included in the state space model. Sensor dynamics, however, are

neglected. That is, the dynamic states of the state space model are used as vehicle perturbation

velocity, angular rates, and angle sensor readings directly. The flight control system is implemented

in difference equations and provides stable dosed loop control of pitch rate, roll rate, and sideslip

angle. The flight control system is described fully in Subsection 3.2.2.

Failures for the following set of fourteen aircraft flight control system components will be

studied. The six actuators of interest are: right elevator actuator, left elevator actuator, right

aileron actuator, left aileron actuator, right rudder actuator, left rudder actuator. In addition,

there are eight flight data sensors: velocity sensor, angle of attack sensor, pitch rate sensor, pitch

angle sensor, sideslip sensor, roll rate sensor, roll angle sensor, and yaw rate sensor.

1.7 Limitations

Even though our research concerns the in-flight characteristics of a real aircraft, our research

will be limited to digital computer simulation only. Since no real human pilot will be flying this
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aircraft, we won't be able to test the proposed dithers for pilot comfort. In the case of the LAMBDA

remotely piloted vehicle, pilot comfort may be defined as the lack of annoyance due to dithers while

operating the joystick for remote control. As stated before, the subliminality limits on 9-forces

have been determined through library research. We must depend on the findings of others for our

definition of "subliminal".

The hierarchical concept is desigred to handle multiple failures. Conceivably, a hierarchical

structure could handle the one-by-one failure of all modeled components. Our efforts are aimed at

proving the legitimacy of the hierarchical concept. To do this, we are employing only the minimum

structure required for this proof- two failures. This should be sufficient since the MMAE algorithm

is intended to work the same regardless of where in the hierarchical structure it is being employed:

an initial rondition is hypothesized and all other possible conditions are continuously checked for

validity. Research done in this thesis will demonstrate that this is the case.

1.8 Summary of Following Chapters

This introduction chapter provided a statement of the problem, background, and some specific

questions which will be the focus of our research. A historical background will be provided in the

next chapter. The reader will note that a thorough literature review has been undertaken and that

the current research effort falls in a logical succession to those preceding it.

Chapter III gives a specific road map on how our research will be conducted. Software tools

will be described. Our implementation of the LAMBDA dynamics along with its controller and

wind gust model will be presented as well. A presentation on the MMAE design specifics and

Kalman filter designs will give the reader detailed insight into the machinations of our complete

system. Finally, Chapter MIT concludes with an output format description which will be useful in

analysis.

Chapter IV will be a detailed presentation of the results of our research. An analysis will be

presented in Chapter V. Hen, answers to the research questions posed in Section 1.5 will be found.

Finally, a conclusion will wra', ap the significant findings of our work and present ideas for future

research.
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II. Literature Review

Through recent years, several research efforts have sought to prove the earlier claims that

Multiple Model Adaptive Estimation (MMAE) can be used as an effective algorithm to identify

parameters (particularly sensor and/or actuator failure status) in a flight control environment.

Mathematical development was followed by computer simulation. Computer simulation has re-

vealed many difficulties in realizing the anticipated potential of MMAE. Though many problems

have been solved, more research is required to affirm controlled and stable operation in actual

flight. With the LAMBDA Unmanned Research Vehicle (URV), the in-flight data needed as proof

of concept may be obtained with minimal cost and essentially no threat to human life. Actual flight

testing is on the horizon.

2.1 Early Research

In 1965, D. T. Magill established the mathematical framework for MMAE [6]. He proposed

a set of Kalman filters, each based on a different system model based upon a distinct value of a

parameter vector. In a Kalman filter, the difference between the measurements from the true plant

and the predicted measurements from the estimated states are known as residuals, r:

r = z - Hi- (2.1)

If the model in the Kalman filter is not an accurate portrayal of the actual system, the predicted

measurements, Hi-, will not match the actual measurements, z. The residual gives information

about this mismatch. Magill used these residuals to produce a weighted sum of the state estimates

that would be theoretically better than a state estimate produced by a single Kalman filter based

on a single presumed value for the parameter vector.

An excellent paper on the broader topic of failure detection is by Willsky [25]. In 1976, he

gave an overview of many methods used in determining changes in plant parameters. Noteworthy

is his anticipation of the growth in computer power that would facilitate implementation of several

of the techniques he reviews. He states that accurate and reliable algorithms will be complex and

require modern parallel processing computer structures. As the complexity of algorithms increases,
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though, the need for redundant hardware may decre.. Thus, Willsky has unveiled the secret for

perfecting a failure detection algorithm.

Willsky points out that an improvement in failure detection could be obtained by studying the

characteristics of several failure modes. This would limit the possibilities of parameters to estimate

and give up-front information about failures one would anticipate. One of the promising techniques

he mentions makes use of a bank of filters, each designed for a specific failure. Probabilities

indicating a level of truth for each filter's hypothesis are formed from their respective residuals.

The advent of the F-SC Digital Fly By Wire (DFBW) research aircraft presented the oppor-

tunity to test computer-driven flight control algorithms on an airborne aircraft. Athans el. at. [1]

attempted to implement Multiple Model Adaptive Control (MMAC) on the F-SC for the purpose of

estimating flight conditions. The structure of an MMAC algorithm is similar to that of Figure 1.1,

except that each elemental filter is cascaded with a deterministic optimal controller that accepts

Sas input and produces uk as an output, and then umuc is generated as a probability-weighted

average of the u&'s. The authors were, in effect, estimating dynamic pressure through an MMAC

algorithm that did not make use of air data sensors which normally provide dynamic pressure in-

formation. Thus, this MMAC adapted to a different uncertain parameter than the failure status

parameters of the current research. A bank of Linear Quadratic Gaussian (LQG) compensators

was set up to cover the range of possible flight conditions for the F-8C. Each compensator had

coupled to it a filter that used rate and acceleration information to develop a residual and a state

estimate. Each LQG compensator produced a control input based on the state vector presented by

its respective filter. All residuals were compiled in a probability evaluator, which in turn assigned

a probability weighting to each control input from all LQG compensators. Finally, a composite

control input was computed from the weighted sum of all control inputs and sent to the aircraft

controls. An important finding from this work is the negative effect of 0 dominance (see Subsec-

tion 1.3.3) which is treated in AFIT theses to be discussed.

Dunn and Montgomery [2] also made use of the F-8C program, but the results of their efforts

were limited to computer simulation in anticipation of better results before attempting in-flight

tests. Their work is related to the current study of failure detection in that their system attempted

to estimate aerodynamic stability derivatives. The first point of interest to us deals with the dither
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signls Dunn and Montgomery used to stimulate the dynamic modes of the aircraft. They found

that identifiability of parameters is enhanced when the amplitude of the test control input, or

dither, is increased. The dither must have a large enough signal to noise ratio (SNR) so that its

effect is distinct from the disturbances caused by the atmosphere. On the other hand, one would

like this automatic test signal to be subliminal to the pilot. Hence, a balance between identifiability

and subliminally must be struck. Secondly, we are interested to learn that the estimation process

may go unstable if the dither frequency is too low. Also, if the dither frequency is much above

those of the aircraft's dynamics, the sensor data will provide no useful information for parameter

estimation.

2.2 MMAE at the Air Force Institute of Technology

Thesis work at AFIT has spanned a few years, and the current research will build directly

upon those efforts. Donald Pogoda [13, 19] and Richard Stevens [14, 21] both applied Multiple

Model Adaptive Control algorithms to the STOL (short takeoff/landing) F-15. Stevens installed a

Command Generator Tracker / Proportional plus Integral / Kalman Filter (CGT/PI/KF) controller

in each elemental controller to form a bank of controllers that would identify actuator and sensor

failures on the STOL F-15 and reconfigured the commanded control of the aircraft accordingly. He

contributed knowledge on the tuning of the Kslman filters in this structure. Each filter representing

a certain failure must have a unique domain in parameter space. This means that the characteristics

of residuals for a given filter must be unique to that failure, yet be responsive to partial failures

of that type as well. Furthermore, he identified the effect of 0 dominance in his results, showing

that the leading coefficient of the probability density function given by Equation (1.21) caused false

alarms biased toward sensor failures. This is due to the scaling of probabilities by the inverse of

the determinant of the covariance of residuals. Each residual has a different covariance, especially

those associated with failures of sensors, which tend to be small, as explained in Section 1.3.3. The

inverse of this covariance determinant is a multiplier on the probability. So, one can see how sensor

failures are pre-disposed to having a failure probability that is higher than fully functional aircraft

or failed actuator conditions.

Later on, Menke [15] and Stratton [22] developed MMAE-based controllers for the VISTA

F-16. In contrast with an MMAC, an MMAE-based controller uses the structure of Figure 1.1
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directly, and then the i produced by the MAE in that figure is passed to a nu 9 e controller

to produce the control u. This single controller may be informed of the best estimate of the

uncertain parameter, i, and adapt to that estimate, or it may simply be a single pre-existing

control law (as for Menke's and Stratton's research) or an enhanced-robustness controller designed

specifically to provide good control despite parameter variations. Menke 1171 again demonstratd

the importance of Kalman filter tuning for each elemental filter representing one type of sensor or

actuator failure. The state estimates from each filter are weighted by a probability computation

which utilizes residuals from each elemental filter to develop a composite state estimate vector. The

MMAE composite state estimate vector is sent to a single controller, the VISTA F-16 flight control

system, which produces a single control input vector.

The importance of Menke's work to the current work is that he studied a hierarchical struc-

ture of failure detection which was able to detect up to two sequential or simultaneous faults.

Furthermore, he performed an analysis of dither inputs. The qualities of these input signals are

directly related to the failure identification ability of the MMAE algorithm [17].

Finally, the first application of MMAE to the LAMBDA URV was made by Hanlon [3]. He

studied single actuator and sensor failures and established that the algorithm does in fact converge

to a single failure hypothesis. Again, he noted the effect of P dominance, as did his predecessors.

Also, dither inputs were found to be most effective when they carry the natural frequencies of

the aircraft dynamics. Finally, Hanlon experimented with changes to the -. coefficient of Equa-

tion (1.22).

The focus of the current work is, of course, to build on the findings of Hanlon and Menke

by setting up a hierarchical structure of failure detection for the LAMBDA URV and to provide

further refinement of the dither techniques required for effective failure identification.

2.S Chapter Summary

A review of important literature on the topic of Multiple Model Adaptive Estimation has been

accomplished. The basis for MMAE was established in 1965 by D. T. Magill when he proposed

that estimated states from several Kalman filters could be combined to form a better estimate

of the true states than state estimates from only one Kalman filter, when faced with parameter
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uncertainty in the model upon which the filters are band. The F-SC digital fly-by-wire aircraft

presented the opportunity to test MMAE on an airborne aircraft. As a result, several important

conclusions were published, including the effect of 0 dominance.

Research at the Air Force Institute of Technology in recent years has established several

concepts that improve the performance of the MMAE algorithm. Extensions to Multiple Model

Adaptive Control have demonstrated that this algorithm can be used effectively in flight control

systems. Finally, a great deal of work has been accomplished to identify characteristics of MMAE

performance when minor modifications to the algorithm are installed in an attempt to enhance

failure identification.

2-5



III. Methodology

In this chapter, we establish the specific details of how our investigation is to be carried

out. The research is confined to a study using software tools to simulate the aerodynamic states,

flight control system states, and flight sensor measurements of the LAMBDA URV during flight

through moderate wind conditions. The flight information generated by the software simulation

will be referred to as the truth data. This truth data is used by the MMAE algorithm imple-

mented in FORTR.AN, which develops failure detection and identification decisions based upon the

performance of its bank of Kalman filters.

The design of the MMAE algorithm is well established and the code for this thesis will be

a modified version of Capt Hanlon's FORTRAN MMAE program [3] which was generated from

Menke's code [15]. One important change to Hanlon's code will be the addition of a hierarchical

structure, similar to that of Stevens [21] and Menke [151, to detect dual failures rather than just

single failures. Since the aircraft truth model is augmented with a wind simulation model, the

Kalman filters will have to be tuned to account for this injection of uncertainty. The standard

procedure for tuning Kalman filters in an MMAE system is to compare residual tracking against

the standard deviation statistic computed by the filter for that residual. An alternate procedure

for Kalman filter tuning is investigated in this thesis.

The test procedure will feature various input dithers for enhancing failure identification,

which will be applied to the truth model simulation to generate truth data. The truth data will

then serve as the input to the MMAE algorithm. Results of the MMAE will be displayed in

graphical format as well as tabular data formatted for easy analysis. The goal is to match changes

in dither characteristics to variations in MMAE performance, with the overall objective being to

demonstrate as many correct identifications with as little delay and as few false alarms and/or

ambiguous declarations as possible.

3.1 Software Tools

All tools used in this study will be either FORTRAN programs [23] or MATLAB programs [8].

MATLAB is favored where manipulation of matrices and other standard mathematical functions

are prevalent. Furthermore, a distinct advantage is gained by using the graphical model building
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capabilities found in the Simulink tool [9] of MATLAB. FORTRAN is employed for three rea-

sons. First, the MMAE code currently exists in FORTRAN. Second, an MMAE algorithm written

in FORTRAN is easily and efficiently transferred to the madcine language used by LAMBDA's

on-board computer. Finally, the MMAE algorithm will be run literally thousands of times, and

efficiently coded FORTRAN will generate object code capable of much faster execution than MAT-

LAB m-files which are re-compiled each time they are run. Therefore, a great deal of time will be

saved in awaiting test results by using compiled FORTRAN code.

3.2 LAMBDA Model

LAMBDA is an unmanned research vehicle (URV). It resembles a large radio controlled

airplane with a wingspan of 14 feet. It is equipped with the flight data sensors which we are

studying as potentially failed components. The primary flight control surfaces include left and

right elevators, left and right ailerons, and left and right rudders. These, too, are to be viewed as

potentially failed components. In addition, four flap surfaces and a throttle control are featured on

the real LAMBDA but not included in our model. The throttle is not included because, though

it is a primary means of flight control, it is not part of the flight control system. Rather, the

LAMBDA typically is flown at full throttle. Therefore a failed condition is engine cutoff which is

immediately followed by emergency landing procedures, conditions obvious to any pilot without the

help of an MMAE algorithm. The flaps are not included in the model of our study because they

are not primary flight control surfaces. Failure of a flap would not cause a reconfiguration of the

flight control system, but its obvious effects would cause a pilot to reverse his conscious command

to deploy them. In summation, we will be studying the effects of the failure of each of eight flight

data sensors and six primary flight control actuators.

The LAMBDA is a stable system in the short period, phugoid, roll subsidence, and Dutch roll

modes. Itm spiral divergence mode is unstable with a long time constant. So, although its modes

are faster, this aircraft resembles a typical manned aircraft in performance.

Previous MMAE work using the LAMBDA assumed no flight control system [3]. Command

inputs went directly to the actuators without being modified by a flight control system. Capt S.

Rasmussen, WL/FIG, has designed a Quantitative Feedback Theory (QFT) controller which will be
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implemented in our truth model [26]. The addition of a feedback controller should aid the MMAE

algorithm in correctly identifying failures because the additional commands to the actuators should

provide natural dithering while rejecting the effects of wind gusts. Moreover, the difficulties in the

design of the MMAE elemental filters in the previous research [3] due to diverse eigenvalues of the

open loop system (particularly the unstable mode's eigenvalue) should be remedied by the feedback

control system.

3.2.1 Truth Model. The aerodynamic portion of the LAMBDA is represented by aero-

dynamic dimensional derivatives which were generated from test data of actual LAMBDA flights.

This information was obtained from Capt S. Sheldon, WL/FIGS [261 and numerical values and def-

initions may be found in Appendix A. Dimensional derivatives are determined by experiment and

they describe the change in one aircraft state variable due to a change in some other aircraft state

variable. The primed symbols distinguish dimensional derivatives from non-dimensional derivatives

which are related to the former by a factor indicating the nominal flight condition. Aircraft state

variables are perturbations from nominal conditions and, since all nominal angles and rates except

velocity are zero, the state variables are defined as follows: u - forward velocity perturbation, a -

angle of attack, q - pitch rate, 0 - pitch angle, , - sideslip angle, p - roll rate, 0 - roll angle, r - yaw

rate. The control variables are: b., - left elevator angle, 6., - right elevator angle, 6., - left aileron

angle, 6, - right aileron angle, 6,, - left rudder angle, and 6,, - right rudder angle.

The eight-state model of the form i = Fx + Bu in terms of the dimensional derivatives

is shown in Equation (3.1). The values assumed by the dimensional derivatives depend on the

equilibrium flight condition about which the model is linearized. We will work with the flight

conditions in Table 1.1, which is repeated below as Table 3.1. These particular conditions are

chosen because they represent the aircraft in level cruise, the condition of predominant concern for
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this vehicle.
Ua X.X.X'zX 00 0 0 o ,

ak Z. Z. Z" Ze' 0 0 0 0 a

q M.' M.' M9 Ms'0 0 0 0 q

0 1 0 0 0 0 0 0 p

,o o o o L,'@ L;' 0 L' p

r 0 0 0 0 0 1 0 0

(3.1)

X4x1 X8, X461  XG., 0 0

Z., z. ZOO zo,, 0 0 .,

So, MSG, M461, M•G, 0 0 ..

0 0 0 0 0 0+
YS'.. y~ io, .Yo, Y8, b, .

L'E. L'5 . L'S I, ' '

0 0 0 0 0 0 5..,
Ns. Ns. N,', Nj' Ns, Ns,

Note that the input matrix of Equation (3.1) has left and right inputs for each type of control

surface. This will allow us to apply independent dither inputs to a control surface on one side of the

vehicle in order to distinguish its effects from the surface on the other side. Cross coupling terms

also help distinguish right from left elevator and right from left aileron. These terms appear in the

input transfc.mation matrix of Equation (3.1) as the Y', L', and N' terms in columns I and 2 for

Table 3.1 Nominal Flight Conditions.

Parameter Symbol Value Units
Trim Velocity Uo 169 feet/second
Weight mg 200 pounds
Center of Gravity X,. 46.8 inches
Pitch Angle ;9 0 degrees
Dynamic Pressure Q 30.43 pounds/feet 2
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the elevator and as X', Z', and M' terms in columns 3 and 4 for the ailerons. No cross coupling

into the longitudinal channel exists for the rudders. The lack of such terms reasonably represents

the behavior of the real LAMBDA since the center of the rudder surfaces lies near the horizontal

reference line drawn from the aircraft center of mass. Therefore, negligible pitching moments due

to rudder drag are induced with rudder deflection.

The inputs into Equation (3.1) are control surface angles. The control surfaces are driven by

actuators which have their own dynamic characteristics. The transfer functions relating actuator

command to actuator position are shown in Equations (3.2), (3.3), and (3.4) [26]:

Elevator Actuator:
s(_ ) _ 136.20 (3.2)

O *2(j) .6 + 21.628. + 176.63

Aileron Actuator:
6-(J) 216.84 (3.3)
6(j) - 82 + 22.147s + 224.42

Rudder Actuator:

,(a) = 9060 (3.4)

4,.(s) a + 4.4372

See Appendix B for Bode plots of aircraft response and Subsection 3.3.2.1 for Bode plots of actuator

responses. The real control surfaces on LAMBDA are limited in their range of movement according

to the limits in Table 3.2.

Table 3.2 Range Limits on Control Surface Movement.

Control Surface Limits [degrees]
elevator ±150
aileron ±150
rudder ±200

In addition to the aircraft equations of motion, it will be necessary to study vertical and

lateral g-forces experienced by a would-be pilot. The following equations are implemented in the

state space form of the truth model:

Lateral Acceleration:

A, = Uo4 - gO + Uor + li= -l., (3.5)
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Vertical Acceleration:

As = U06 - Uoq + l.4 (3.6)

Uo is the trim velocity from Table 3.1. The values for 1, and I, represent the coordinate position

of a pilot relative to the center of gravity of the aircraft. Since LAMBDA has no pilot on-board,

1. and L, were chosen to correspond to the location of the on-board accelerometer [24:p. 2.9] and

have the values given by

1. = 0.3279ft (3.7)
1. = 0.2903ft

Thus, in the event that data from this thesis is correlated to in-flight tests, no coordinate conversion

would be necessary to compare g-forces.

The LAMBDA has eight flight data sensors which correspond to the eight state variables of

Equation (3.1). The outputs of the sensors are noisy representations of the state variables. The

model for each sensor in our truth model is simply the state variable plus zero-mean white Gaussian

noise of variance (or mean squared value) R,,i which is the corresponding i-th diagonal element of

the 8-by-8 measurement noise covariance matrix, R:

R, 0 0 0 0 0 0 0

0 R. 0 0 0 0 0 0

0 0 R9 0 0 0 0 0

0 0 0 R. 0 0 0 0 (3.8)

0 0 0 0 RO 0 0 0

0 0 0 0 0 RP 0 0

0 0 0 0 0 0 R, 0

0 0 0 0 0 0 0O R

The values used in Equation (3.8) are those used by Capt Hanlon [3] and are given in Table 3.3.

They are the result of analysis of in-flight measurement data.
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Table 3.3 Sensor Noise Variances.

Sensor Symbol Variance Units
Forward Velocity R. 1.6 x 10-2 (feet/secondS)2

Angle of Attack RI 1.15 x 10- radians2

Pitch Rate Rg 1.194 x 10-3 (radians/second)2

Pitch Angle Re 6.98 x 10-6 radians
Sideslip Angle Rp 8.7264 x 10-5 radians=

Roll Rate R, 1.122 x 10- (radians/second)2

Roil Angle R1 1.45 x 10-5 radians2
Yaw Rate R, 9.801 x 10-3 (radians/second)2

3.2.2 Flight Control System Design. A flight control system (FCS) based on a Quantita-

tive Feedback Theory (QFT) design by Capt S. Rasmussen [26] augments the flight characteristics

of our aircraft truth model. The FCS enables the pilot to provide pitch rate commands, roll rate

commands, and sideslip angle commands. In order to command left and right control surfaces,

the QFT FCS was duplicated in left and right channels for each control axis, thereby enabling

independent control of individual surfaces. This configuration is realizable since the controller is

implemented in the form of difference equations in the on-board computer and each control surface

receives its commands from an individual output port of the computer. The controller makes use

of feedback from the aircraft's pitch rate, roll rate, yaw rate, and sideslip angle sensors, which

provide noisy measurements of the corresponding aircraft states. Our truth model incorporates the

appropriate noise into the sensor measurements. Therefore, the QFT FCS will receive the same

noisy measurements that are fed to our MMAE algorithm. Eventually, it would be desirable to

replace the noisy measurements with MMAE-provided estimates of these aircraft states.

A block diagram of the QFT FCS is shown in Figure 3.1. The blocks designated by Fl1_I,

F22_r, etc., are the prefilter blocks of the QFT design. Likewise, the GIIl, G22.r, etc., blocks

denote feed-forward compensators. Difference equations based on a sampling period of T = 0.02

second are provided to implement the prefilters, compensators, and washout filter (see Appendix C).

It is important to note that the specific controller design used in this thesis failed its flight test

on the LAMBDA in August 1993. Oscillations were induced in the longitudinal channel due to a

structural bending mode which resided within the controller's response envelope. The design was

successfully corrected but, due to the amount of work that would have to be re-accomplished, the
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previous design is used consistently throughout this thesis. The structural modes of the LAMBDA

are not modeled; therefore, controller performance in our truth model should not be unlike the

performance of the corrected controller.

At the bottom of Figure 3.1, the reader will see a washout filter block through which yaw rate

feedback must pass before being summed with sideslip angle error. The function of this high pass

filter is to block the low frequency yaw rates commanded by the pilot in his/her effort to change

the sideslip angle. However, high frequency disturbances are passed and subsequently nulled by

the controller. In Subsection 5.1, the impact of a failed yaw rate senor which disables the washout

filter will be discussed.

3.2.3 Dryden Wind Gust Model. Our purpose in this thesis is to show that the MMAE

algorithm is capable of performing well when the LAMBDA is in atmospheric flight. Wind distur-

bances are an unavoidable reality in this environment, so we would like to simulate wind in the

computer model. The choice of wind gust model is the Dryden wind gust model for two reasons.

First, it is the traditional model used in other MMAE theses [3, 19, 21]; and second, it is one of

two models specified by MIL-STD-1797 [18]. There are excellent developments of the Dryden wind

gust model in Capt Martin's thesis [7] and Capt Pogoda's thesis [19]. The essential aspects of the

Dryden model will be explained here.

Wind disturbance of an aircraft is a random process. In the following development, inputs of

white Gaussian noise, Equation (3.9), will be "shaped" in the wind gust model then transformed

into disturbance terms to be added to the state equations of the aircraft state space model. The

input white noises have Gaussian distribution with zero mean and unit strength. This is represented

by the continuous time Q matrix in Equation (3.10), where Efw(t)wT (t + T)} = Q(t,)6("):

WS

W W (3.9)

WVP

3-r
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1000

0100 (3.10)
0010

.0 0 0 1.

The shaping is accomplished by passing the white noises through filters having random process

outputs which fit the power spectral densities of the Dryden model specified by MIL-STD-1797, as

given in Equations (3.11) through (3.16). # represents a power spectral density function. Subscripts

correspond to the aircraft state variable subjected to that disturbance, e.g., *I. is the power

spectral density of wind gust disturbance associated with forward velocity perturbations. Subscript

g denotes a wind gust model power spectral density rather than the PSD of the aircraft state itself.

. Vw2 1 (3.11)

4~~(w) = 3 w2 + (3.12,o2 + V..J..

*__ g(3)L. (3.12)

Ip"(w) = __2___(• +11 (3.15
U2L.VT (2+V 2

.(•) = 'I 2 V2 w
16t •2 + 4p(w) (3.13)

P. (W = f.23V10

":,(. =o'VT (128,'000M.2) W2 l'-V-2 (3.14)

3 2: + V:L2

*_P.((O (3.16)• •'() =9b2z, (,,2 + S72 1

VT is the nominal aircraft velocity and 6 is the aircraft wingspan. The variables L. =505.2,

LV = 252.6, and L. = 50 are turbulence scale lengths in feet/second and we determined from

Figure 266 of bML-STD-1797 [18] for an altitude of 100 feet above the ground. or. = 0.1u"o = 5.063

where u2o = 50.63 feet/second is the wind speed measured 20 feet above the ground [18.-p.653].

a., = 8.688 and a,. = 8.688 are related to a,. = 5.063 as shown in Figure 267 of (18].
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The transfer functions of the shaping filters required to produce outputs with the power

spectral densities of Equations (3.11) through (3.16) are given respectively by:

_.._,_ -, 2o. 1'•_, 1•(.T2V 1,, .

G..(S)= -t&--.-m-. (3.18)
"'.(a) L"V- (. + Yz)

G,.(,) = ,a _ ,rV,.
=u.(") "1 + --.(,) (3.19),. (,,) 4A a+

G,.() = PO =o. 7 o , (1.2)

G P ,(,) 1a0, L ,+ "-& (3.21)

GO,,.) f-:-)" =F. _ (,+ (),

.. (,) - ,,0 -,(322)
.. (a) = 3b a + ,

The transfer functions are implemented in the state space form zi = Fx + Gw, which incorporates

the four independent white noise inputs (w., w., w., and w,) and eight wind gust states (UN, a',,

ap, qs, p •, f P., and r.). The subscript g denotes that these are perturbations to the respective

aircraft states due to wind gusting. The prime on a.' and 0. simply means that these are internal

states to the second-order a. and P. processes, respectively.

U; =.Y 0 0 o
p 0 0 0 0 ...

0 0 0 0~*

4, 0 0 0 0..

1': 0 0 0 0
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0 0 0 0

0 0 0 0 do

00 0 0 a

0 0 0 0 • +

T 0 0 0 p9

o .0•L 0 0 •

o ..0 .(1- Vi)•/•i• -•-• 0 6,

o .. 0 - u,(x-vj)V'" • 3' ,,

• •L. 0 0 0

0 1 0 0

0L, 0 0

o f-IK y-zx -- v.V

o 0 0 0 U.

o o u.( 1,,oo•%,)1  o ,
0 o 0 1
0 0 0 0,W

0 0 0 0

Finally, a transformation matrix, T,,, as given in Equation (3.24), adds combinations of the

unprimed wind states to the aircraft dynamic states as shown in Equation (3.25). Note that the

symbols in T.4,d share the identical values to the corresponding symbols in Equation (3.1).

-X'S 0 -XI -X' 0 0 0 0

-z'. o-z. -z; 0 0 0 0
-M. 0 -M. -Mt 0 0 0 0

0 0 0 0 0 0 0 0T.,= (3.24)
0 0 0 0 -Y' 0 -Y' -Y'

0 0 0 0 -Lp, 0 - _o L

0 0 0 0 0 0 0 0

0 0 0 0 -N' 0 -NJ' - N'

il-t = Fxz.I + Bu + T.,,•xw." (3.25)
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The added realism of a wind gust model will cause the QFT flight control system (FCS) to

provide actuator commands independent of pilot inputs in an attempt to reject wind disturbances.

This effect may be an aid or a hindrance as we search for the best dither input to command in

order to enhance failure identification. Nevertheless, wind disturbance i a reality that we should

not neglect.

1.3 MMAE Design

The theory behind MMAE was established in Section 1.3. In the present section, the algorithm

is presented which is implemented in FORTRAN code. Rather than printing all of the FORTRAN

source code with all of the input and output routines, a more simplified digestion of the routines

is presented. Only those statements required to get from the algorithm inputs of command inputs

and sensor measurements to the algorithm outputs of failure probability and fault declaration are

presented.

The FORTRAN code for this thesis is identical to that of Capt Hanlon's thesis [3] with a few

modifications. The major difference is that Hanlon's code is designed for single failure identification

whereas our code is designed for single and dual fault detection. Other changes include a re-

formatting of the input and output files so that MATLAB [8] instead of Matrix. [4] can be used to

prepare the input files and process the output. The reason for converting to MATLAB is because it

is more widely available at AFIT, numerical problems have been detected in Matrix., and because

MATLAB's graphics capabilities seem to be more flexible.

3.3.1 Structure of MMAE. The FORTRAN software program used to implement the

MMAE algorithm is based on the equations presented in Section 1.3. There are a few subtle points

concerning the algorithm's software implementation that bear discussion.

The MMAE program operates on a sample period of T. = 0.02 seconds. This is identical

to that of the QFT flight control system on-board the LAMBDA. The impact is that, for each

measurement provided at T. intervals, the MMAE propagates the Kalman filter states and updates

them only once. Also, a probability-weighted state estimate, :kMMAB, is updated once every T,

seconds and failure status inquiries are made on that schedule as well.
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Initial probabilities an Alton ae determined by a lower limit, pMIN, whckh provents any

probabilities fram going to aero:

PMIN = 0.001 (3.26)

f any probabilities were to go to sero, the recursive nature of filter probability calculation would

prohibit subsequent non-sero probabilities. Refer to Equation (1.20). The initial probability on

the filter holding the correct hypothesis, PMAX, is pie-calculated according to the total number of

filters, NF = 15, so that the probability sum of all elemental filters is 1.000.

PMAX = 11.000 - PMIJ(NF - 1)] = 0.986 (3.27)

When a simulation commences, the fully functional filter assumes the maximum probability PMAx =

0.986. Similarly, when a new filter is declared to have the correct hypothesis (and that new bank

of filters is to be brought on-line), it is reassigned the probability PMWAx immediately, and all other

filters in the new bank are initialised with probability PMIN.

The rT(t,)A- 1 (t,)r5 (tQ) term of Equation (1.22) is multiplied by -1 rather than the - L Han-

Ion's work established that -1 produced the fastest MMAE probability convergence times while

minimizing false alarms [3:p.55]. Furthermore, to prevent numerical difficulties, the -rk (t.)A-'(t.)r5 (t1 )

is limited to a minimum value of -50. Also, the P term of Subsection 1.3.3 has been stripped. Su-

perior performance (that is, removing the proneness to false alarms on sensor failures) without this

leading coefficient has been established [3, 19, 21].

A probability history window is used for each filter to average the past ten probabilities result-

ing from calculations suggested by Equation (1.20) before being used to declare that a particular

elemental filter has the correct failure status hypothesis, i.e., that its averaged probability exceeds

some value, here selected to be 0.5. Hanlon noted that volatility is introduced into the MMAE

failure declaration process with shorter window sizes [3]. Conversely, longer windows yield sluggish

performance. With a probability window of 10 and a failure declaration trigger of 0.5, the theo-

retical minimum failure identification time would be nT, seconds where n is the minimum number

of sample periods between actual failure and MMAE identification, and T. = 0.02 second. We can

solve for n given the constraints that the filter hypothesizing the failure has the minimum limit on

probability, PmIN = 0.001, before the failure and the maximum probability, PMAX = 0.986, after
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the failure as calculated by Equation (1.20).

0.5 = 0.986n + 0.001(10 - n)10 (3.28)

n = 5.066 (3.29)

Equations (3.28) and (3.29) tell us that the absolutely fastest failure identification time with our

design is 5 x 0.02 = 0.10 seconds, under the constraints listed above.

The minimum window-averaged probability required to declare a failure is PrAJG = 0.5. The

trigger is set at this level because we want only one filter to be declared as holding the correct

hypothesis. When all filter probabilities must sum to 1.0, it is possible for only one filter to have a

probability of 0.5 or higher.

The items discussed above are steps taken to translate the MMAE theory presented in Chap-

ter I into a practical implementable algorithm which has the structure and performance charac-

teristics required for real world application. The program code used in testing is therefore easily

translatable to languages other than FORTRAN.

3.3.2 Kalmnm Filter Design. The Kalman filters used in the multiple model scheme are

organized into banks. Each bank has a primary filter and fourteen secondary fiters. These cover

all failures possible with the premise that the primary filter reflects the current failure status and

that any possibility of one additional failure will be covered by a secondary filter. In the level-zero

bank, the primary filter is the fully fumctional filter, as shown in Figure 1.2. A secondary filter of

level-zero becomes a primary filter once the MMAE declares the corresponding failure and moves

to a level-one bank. Banks in level-one also include a fully-functional-aircraft filter to provide an

escape route back to level-zero in the case of a false failure declaration.

The Kalman filters will operate in the steady-state-gain condition. That is, the MMAE

algorithm will use pre-computed constant Kalman fiter gain matrices, Kh, and pre-computed

constant inverse residual covariance matrices, Ak; . This leaves the on-line work of the MMAE

algorithm limited to the propagation of filter states and residual computation. Discrete time state

transition matrices, *,%, discrete time input matrices, Bd,, and output matrices, Hk, are the only

additional data required to accomplish this. Therefore, a MATLAB routine was developed to
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create these matrices and store them ahead of time in data files for the MMAE algorithm to use

later. Similarly, these pre-computed matrices will lessen the computational load when the MMAE

algorithn is implemented on the real LAMBDA.

The truth model consists of the aircraft dynamics model, the wind gust model, second-order

actuator models, and a discrete-time flight control system. Since the flight control system (FCS)

states are known implicitly at any time, there is no need to model them in the Kalman filters.

The actuators may be reduced to first-order models to eliminate computation of four Kalman filter

states (see Equations (3.2) and (3.3)). The wind gust states are reducible to scaled additive white

noise rather than shaped noise. The resulting Kalman filter model is left to represent only the

aircraft dynamics model, single-order actuators, and uncertainty due to wind (without explicit

states devoted to estimating the wind).

To accommodate this reduction in complexity from the truth model, the following consid-

eration with respect to inputs must be made. The truth model will have command inputs which

represent the deflections applied to the aircraft control stick. These command inputs are processed

by the FCS and end up as the actuator command inputs which are applied to the inputs of the ac-

tuators. With the elimination of the FCS from the Kalman filter models, the inputs to the Kalman

filter are the actuator command inputs rather than the command inputs.

3.3.2.1 Actuator Order Reduction. Equations (3.2) and (3.3) are second-order trans-

fer functions representing the dynamics of the actuators on-board the LAMBDA. In the interest

of saving on-line computational time for our MMAE algorithm, it is desirable to reduce these

transfer functions to first-order, thus reducing our Kalman filter model by four states. A study

of the second-order transfer functions of Equations (3.2) and (3.3) by referring to the Bode plots

of Figures 3.2 and 3.3 shows that the damping ratio is very high and that we can expect good

approximations from first-order transfer fimctions.

A first-order approximation may be obtained by matching its bandwidth and steady state

gain to that of the second-order system. The bandwidth is obtained by choosing the frequency at

which the gain crosses the half power point. For the elevator, the steady state gain is

136.2
K... = 17663 = 0.7711 (3.30)
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At half power, the gain is 0.7711 x = 0.5453. To fBid the bandwidth, we set a = jw and take

the square of the transfer function magnitude by squaring the real and imaginary parts and setting

this equal to 0.54532.

136.2V - (Vl)(136.2)2 (3.31)
(178.63 - wz)2 + (-121.6280w), 176.632

Algebraic manipulation leaves us with a fourth order polynomial in w.

W + [(21.6280)2 - 2(176.63)](. 2 + (176.63)2 - 2(176.63)2 = 0 (3.32)

which has roots w = ±j15.5863 and w = +11.3324. We desire a real, positive frequency to

represent the bandwidth, so we are left with an elevator bandwidth of BW. = 11.3324 rad/sec.

Similar calculations reveal that the second-order aileron transfer function has steady state gain,

K,,. = 0.9662 and BW. = 14.3024 rad/sec. First-order transfer functions with these characteristics

have the form
K. x BW (3.33)

(a + BW)

Finally, the reduced-order transfer functions for the elevator and aileron actuators used in the

Kalman filters are given in Equations (3.34) and (3.35), respectively. The frequency responses of

these transfer functions are plotted with the second-order responses in Figures 3.2 and 3.3.

8_(o) 8.7384 (3.3)
6.o(a) - (a + 11.3324)

( 13.8193 (3.35)
(a + 14.3024)

Other techniques are available for first-order representation of second-order systems. However, the

technique presented above does a good job of matching Bode amplitude ratio plot characteristics

over a wider band of frequencies than may other methods.
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Figure 3.2 First-Order (dashed) and Second-Order (solid) Elevator
Actuator Bode Plots. Half Power Magnitude is -5.3 dB.
Bandwidth is 11.3 rad/sec.
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Figure 3.3 First-Order (dashed) and Second-Order (solid) Aileron
Actuator Bode Plots. Half Power Magnitude is -3.3 dB.
Bandwidth is 14.3 rad/sec.
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3.3.2.2 Wind Representation. The wind gust model of Equation (3.23) has eight

states, six of which are added in some proportion to the aircraft states as determined by T.,,W of

Equation (3.24). Again, in the interest of saving on-line computational time, the eight-state wind

gust model of Equation (3.23) will be replaced in the Kalman filter model by combinations of six

scaled white Gaussian noises represented by w,,1d, with strengths determined by

Q.8 0 0 0 0 0
0 Q.. Qa..f 0 0 0
0 Q 01q8 Q 9, 0 0 0Q/,,.. =(3.36)

0 0 0 Q,. 0 0
o o 0 0 QP* Qpav,

0 0 0 0 QP.,. Q,.

where the subscripts correspond to the subscripts of the wind states in Equation (3.23). The off-

diagonal terms represent the cross correlation indicated in the spectral densities of Equations (3.13)

and (3.16). In this section, we will show how the elements of Qji, are determined.

Our strategy is to obtain values for Qfi, ., which have the same average power spectral density

function magnitude as the wind gust power spectral densities across an appropriate bandwidth. The

appropriate bandwidth is that of the corresponding aircraft state variable. Logarithmic magnitude

Bode plots of the LAMBDA's dynamic responses are shown in Appendix B. The bandwidth for

each aircraft state variable is taken from each plot by subtracting 20 dB from the peak logarithmic

magnitude and noting the highest frequency at which the response drops below this line.

The next step is to integrate the power spectral densities from Equations (3.11) through (3.16)

from w = 0 to w = WEw, where wDw is the bandwidth frequency of the aircraft state that corre-

sponds to the power spectral density in question. The result of the integration is divided by the

bandwidth to obtain an average. The average is then placed in the Q1,,., matrix.

Finally, the transformation matrix, Ti, is used to add the constant strength wind compo-

nents into the aircraft states. So, for the Kalman filter model, Equation (3.25) becomes

Xg.clt = Fx-,I + Bu + TwindWilter (3.37)

3-20



T,,,, is represented by G('r) in the Kalman filter state covariance propagation equations, (1.5)

and (1.11), and likewise, Qlit,, is represented by Q(Tr).

The above procedures will produce a Kaliman filter model with zero-order wind representation

and a good Q with which to begin the tuning process. More detail on these procedures is found in

Martin [7].

3.4 Test Runs

3.4.1 Monte Carlo Runs. Due to the large amount of uncertainty generated by the wind

gust model, there will be a variance in performance from simulation to simulation even though

all parameters remain the same. In order to provide representative performance, ten Monte Carlo

runs will be averaged for each set of test conditions. The only variable to change will be the seed

that starts the random number generator which produces normally distributed values for the truth

model's four inputs to the wind gust model and additive white noises for the sensor measurements.

The number ten is chosen out of tradition [3] and because experience with the MMAE algorithm

demonstrates that an average of ten runs gives a very good prediction of what happens over a larger

sample of runs.

3.4.2 Input Dithers. The input dithers will be applied to the command inputs of the flight

control system. In Figure 3.1 these inputs are denoted: left pitch rate command, right pitch rate

command, left roll rate command, right roll rate command, left sideslip angle command, and right

sideslip angle command. Since these are rate and angle commands, each respective control surface

will not necessarily be just a scalar multiple of the magnitude or phase of the applied command

signal. It will be important to ensure that the limits of control surface deflection (see Table 3.2) are

not violated as the characteristics of the applied dither give no indication of the travel commanded

to the surfaces.

Primarily, sinusoidal signals will be used to dither the aircraft. Magnitude, frequency, and

phase will be variable parameters. We are particularly interested in the effects of various dither

frequencies on failure identification times. The magnitude of dither command also affects failure

identification times but this effect is more predictable. In general, larger magnitude dithers shorten

identification time. This is known from using the MMAE program in practice runs and from
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prior research [3:p.36J. The phase relationship between left and right dithers disambiguates the

identification of left from right failed actuators 13:p.37). A phase relationship between left and

right dithers will be established by informal experiment to determine if left failed actuators are

continually and easily distinguished from right failed actuators. Once the value for phasing is

established, it will not be altered throughout our formal experiments.

The input dither will be used to control the magnitude of g-forces applied to the aircraft.

Limits on g-force magnitude are established at ±0.10 g for vertical acceleration and 0.20 g for the

horizontal acceleration. These limits are suggested by Menke [15:p.50] as a result of his "intuitive

reasoning and previous handling qualities experience." Athans and his co-authors used a maxim,,m

limit of 0.25 g in the lateral direction to define their quadratic performance criterion in the design

of their Linear Quadratic Gaussian (LQG) compensator for the F-8C aircraft [1:p.771]. Their hori-

zontal limit was established with the understanding that any horizontal acceleration experienced in

maneuvering is undesirable and that this limit is used as an LQG weighting factor. Furthermore,

discussions with researchers at Armstrong Laboratories Combined Stress Branch reveal that "sub-

liminal" acceleration is indeed an extremely subjective quantity. The human is able to perceive

extremely low levels of angular acceleration and linear acceleration on the order of 102'-. He or

she is able to endure several g's, but, the acceleration range to be described as "not annoying" or

"not noticeable" is not in the realm of research conducted by the Combined Stress Branch.

Information from Dr. R. E. Van Patten, Ph.D., P.E., retired from Armstrong Laborato-

ries, points out that the human body is able to detect angular acceleration rates of 0.1 to 0.5

degrees/second/second. Vibration perception of the body is complex and differs from part to part.

In the frequency band of 1-10 Hz, the hand is able to sense accelerations as small as 0.010 g. The

visceral cavity has a natural frequency of about 4.5 Hz, so dither frequencies of around w = 28

rad/sec should be avoided.

A book by Schaefer which compiles the results of many studies on the stress of vibrations and

g-loading on human physiology provides insight into the subjectivity of "subliminal" [20:pp.55,57].

In Figure 15 of Schaefer's book, g-forces are plotted against frequency for several curves. The

perception curve corresponds to the lowest g-forces perceivable by human test subjects. Voluntary

tolerance describes the level of g-forces which unprotected test subjects refuse to tolerate for ex-
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posure durations of over 5 to 20 minutes. This frequency curve peaks at about 3 g's at the 4 Hs

frequency. Test subjects report unpleaantneas for g-forces of 0.08 g at about 2 Hz and even less

acceleration for other frequencies between I and 10 Hz. However, Schaefer points out that pilots of

military aircraft endure vibrations with g-forces less that 0.08 g for long durations of up to eight

hours "without observable detrimental effects on performance or health" [20:p.57]. This research

does not define but supports our decision to limit vertical g-forces imposed by our dither routine

to 0.10 9.

Finally, a March 1993 interview [5] with an Air Force pilot, Capt Jim Wicker, a C-141 pilot

of the 3950th Test Wing, reveals that "subliminal" acceleration might have the quality of un-

predictability. Pilots routinely endure acceleration due to wind turbulence without annoyance or

degradation of duty performance. Though gusts may be noticeable at times, they cannot be antic-

ipated and this quality may allow higher g-levels to be tolerated than if a constant and predictable

sinusoidal application of g-forces were applied.

3.4.3 Single Failure Verification. Tuning the elemental Kalman filters and verifying single

failure performance go hand-in-hand. Tuning will only involve changes to Q (since R is assumed

to be well known) and verified by achieving consistent MMAE performance in identifying single

failures. Criteria for successful single failure performance are: no false alarms in any of ten 12-

second Monte Carlo runs for each of fifteen failure configurations; no missed alarms over the same

test range; and identification of the correct failure in minimum time, not to exceed 8 seconds.

Furthermore, experimentation to find the optimal dither routine will produce improved MMAE

performance in identifying single fail- i ,s.

3.4.4 Dual Failure Performance Evaluation. Using the optimal dither technique developed

by our research, the performance of the MMAE algorithm will be tested against dual failures. All

possible combinations of two failures will be tested. The first failure induced will precede the second

failure by one second. This time lapse should allow the MMAE to identify the first failure and

stabilize its probabilities before being subjected to a second failure.

The most important criterion for successful performance is that a majority of MMAE prob-

ability must lie with the filter holding the hypothesis of both induced fuilures. In situations where
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Table 3.4 MMAE Kaiman Filter Cods.

Code Filter Model Represents:

FF fully functional aircraft
Al right elevator actuator failure
A2 left elevator actuator failure
A3 right aileron actuator failure
A4 left aileron actuator failure
A5 right rudder actuator failure
A6 left rudder actuator failure
S1 forward velocity sensor failure
S2 angle of attack sensor failure
S3 pitch rate sensor failure
S4 pitch angle sensor failure
S5 sideslip angle sensor failure
S6 roll rate sensor failure
S7 roll angle sensor failure
58 yaw rate sensor failure

the MMAE does not identify the first failure before the second failure is induced, the MMAE is

forced to choose a filter hypothesising only one failure in the face of two failures. The second failure

induced may be the first identified and subsequently, the first induced failure may be identified by

the MMAE's selection of a level-l filter that hypothesizes both failures. The order of identification

is not so important as the fact that both failures have indeed been identified. Nevertheless, order

of identification not matching the order of failure onset will be noted in the analysis.

9.4.5 Output Format. MMAE performance will be represented by time histories of the

elemental Kalman filter probabilities. The probability traces of the fifteen Kalman filters run

simultaneously during an MMAE simulation and the results of ten Monte Carlo runs must be

presented in a convenient and easy-to-understand format. Such a one-pape compilation of data

is shown in Figure 3.4. Codes enumerated in Table 3.4 are used to denote the hypothesis held

by each filter. Note that the time axes runs from 2 to 12 seconds. The first two seconds of

simulation are eliminated to allow transients to settle out. Failures are introduced four seconds

into the simulation. Shown in Figure 3.4 is the MMAE performance against a right elevator actuator

failure. The probability at each sample time is the average probability of one filter from ten Monte

.rlo runs. The time listed next to the vertical line inside the plot for Al is the average time
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Figure 3.4 Sample of MMAE Probability Histories. Right Elevator Actuator Failure is Induced

at 4.00 snee on Each of Ten Monte Carlo Runs.
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that the MMAE took to identify the Al filter as having the correct hypothesis. At this time,

the MMAE switches to the filter bank holding the right elevator actuator failure as the primary

hypothesis. The probabilities for this new bank of filters are plotted to the right of the vertical

dash-dot lines in filters A2 through S8. The double codes on the left of these vertical lines denote

the dual failure hypothesis held by the new filters just brought on-line. Recall that fully functional

and Al hypotheses are also in the new bank, so the first two plots in the left column are meaningful

from the time the new bank is brought on to the 12 second point.

Another presentation format to be used is the compilation of a series of all possible failures

induced against the MMAE algorithm. See Figure 4.15. In this case, only the filters with the

hypothesized failures are shown. Since fourteen different failures are induced in fifteen different

ten-run simulations (including the fully functional condition), fifteen probability traces are shown

as in the single simulation case. However, here it is important to remember that each trace is from

a simulation with different failure condition than the others.

Each Monte Carlo run will have its own characteristics in terms of time to identify the failure

and false and missed alarms. The formats given here only represent the mean probability time

histories and not the mean + la, performance boundaries because the we are interested in MMAE

failure identification decision times. Knowing the mean ± lir statistical boundaries will provide

little information that is of use to us in a pictorial representation that already makes a big reduction

of the experimental results.

3.5 Chapter Summary

A thorough explanation of the tools and techniques to be used in our experiments has been

given in this chapter. Although a detailed code listing of the MATLAB and FORTRAN programs

developed for this thesis is not provided in this text, the reader should have an idea of their structure

and function when he/she considers the detailed presentation of the LAMBDA model, specifics of

the MMAE design, and the desired format of the test results given in this chapter. The Results

and Analysis to follow are based on the foundations built here.
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IV. Resudts and Primarr Analyses

This chapter presents the data resulting from the performance of tasks described in Chap-

ter MI. First, the process of tuning the Kalman filters for the MMAE filter banks is discussed. A

new technique for tuning is compared to the analytic method described in the Kalman filter design

section of the previous chapter. Secondly, the specifics of a plan to find the optimal dither are

presented. The results of executing this plan are discussed in detail, along with an analysis that

leads to the conclusion of an optimal dither routine. MMAE performance while using real pilot

stick commands for aircraft stimulation are evaluated as an alternate form of dither. Finally, the

MMAE performance against dual failures is evaluated.

4.1 Tuning the Kalman Filters

Since the wind gust model is reduced to additive white Gaussian noise in the Kalman filter

models as described in Subsection 3.3.2.2, a relatively poor tracking of wind dynamics is expected

from the Kalman filters. The power spectral density analysis procedure of Subsection 3.3.2.2

provided a starting Q1a,, shown in Equation (4.1):

343 0 0 0 0 0

0 2.10 x 10-4 6.67 x 10-4 0 0 0

0 6.67 x 10- 4 2.12 x 10- 3  0 0 0Q~c-- (4.1)
0 0 0 5.87 x 10- 3  0 0

0 0 0 0 1.49 x 10- 3 1.78 x 10-3

0 0 0 0 1.78 x 10- 3 2.14 x 10-3

Informal experimentation showed that this analytic estimate of Qill, must be Adjusted to minimise

false alarm declarations by the MMAE. However, the adjustment must be made with the following

in mind. Tight tuning in the face of unmodeled dynamics will enhance random filter probability

shifts while loose tuning causes sluggish MMAE performance and even missed identifications.

The difficulty in tuning the particular design of filter model represented by Equation (3.37)

is that each element of Ql2 ,, from Equation (3.36) is not transformed by T.4,d of Equation (3.25)

to affect only one aircraft state variable. Rather, a change in Q.,, for instance, will affect the

4-1



covariance of al longitudinal aircraft state estimates simultaneously. The same is true for Q..

and Q,. Similarly, the lateral elements of Q1 , each have an effect on all of the lateral states.

Moreover, the impact of Q,* may not have the majority of influence over the addition of white

noise to the aircraft state indicated by its subscript, u, forward velocity perturbation. The white

noise added to form i is dictated by the constants C, through C 4 in Equation (4.2):

is = X'u + X' a + XIq + Xp9 + C,,.. + C2wo. + C3 w,,. + C3 ,,... (4.2)

The numerical values of C, through C4 are determined by the multiplication of Tr,,, x Ql,,. Even

if these constants were easily obtained, it is no trivial exercise to adjust the individual Q's so that

the residuals for each of the four longitudinal aircraft state variables have the desired covariance.

To save time in tuning and to assure that the tuned filter is not prone to false alarms yet

able to respond quickly, a tuning algorithm is implemented in MATLAB. The strategy is to use

various values for Qli,,,, form the Kalman filters for the level-O bank (see Figure 1.2), then run

MMAE simulations against fully-functional-aircraft truth data. The diagonal elements of Q,",

are incrementally reduced one after the other until five Monte Carlo simulations are run without

the MMAE probability of the fully functional filter dropping below 2% of its maximum value,

PFF.AX = 0.9860, to PFF = 0.9663. The algorithm proceeds as follows: a Qyiu• is chosen, MMAE

simulations are run until PFF < 0.9663. If all five Monte Carlo runs result in PFF -> 0.9663 for all

time samples, then Qpuj6, is decremented again until a PFF is detected below the limit.

The strategy for decrementing Qpa,., is to decrement Q., by one increment, run one MMAE

simulation of five Monte Carlo runs, then decrement Q.. by one increment, run one MMAE simu-

lation of five Monte Carlo runs, etc., so that the diagonal elements are reduced in a level manner.

Intuitively, this level reduction approach makes sense, because of the relatively equivalent effects im-

posed by each element of Q1 ,. on the filter's state estimates. Cross correlation terms maintained

a cross correlation coefficient of 0.91 so that Qaoq = 0.91 V / and Q,9 ,. = 0.91 v•1A .

The cross correlation coefficient had to be set manually for two reasons. Qfig, needs to have

positive eigenvalues. Also, too much correlation makes the MMAE algorithm prone to false alarms

and too little makes it sluggish. A balance was struck in informal experiment to arrive at the value

of 0.91.
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The final Qla,, resulting from this algorithm is shown below. Note the severe reduction in

Q,, the (1,1) element. A possible explanation for this is that the five Monte Carlo runs added up

to a total of 60.10 seconds, a short time compared to the magnitude of the time constant found in

the power spectral density of 4.o(w) of Equation (3.11). The differences between Equation (4.1)

and Equation (4.3) give some indication of the validity of the noise model reduction procedure

presented in Subsection 3.3.2.2.

3.09 0 0 0 0 0

0 2.10 x 10-5 8.28 x 10-5 0 0 0

0 8.28 x 10-5 3.94 x 10-4 0 0 0 (3)

0 0 0 1.06 X 10- 3  0 0

0 0 0 0 9.79 x 10- 4 1.33 x 10- 3

0 0 0 0 1.33 x 10- 3  2.18 x 10-3

The of Equation (4.1) was derived from power spectral density analysis. The Q1 ,,, of

Equation (4.3) was derived from MMAE algorithm performance analysis.

The MMAE algorithm performs its Kalman filter propagations and updates in the discrete-

time equations of (1.10) and (1.15). Maximum use of on-line processing time is gained by pre-

computing the constant steady state Kalman filter gain of Equation (1.14). Steady state Kalman

filter gains and residual covariance matrices for each elemental filter are pre-computed in MATLAB

[8] using the function d.lqe (discrete linear quadratic estimator). Inputs to di.qe are: * discretized

with a sample period of T. = 0.02 second; G%, an identity matrix (see Equation (1.13)); H of

Equation (1.2); R from Equation (1.4); and a second order approximation of Qd from Equation (1.5)

as shown below in Equation (4.4).

Qd ,t (*GQGT*T + GQG T) X (4.4)

The steady-state state estimation covariance matrix resulting from d.lqe, P-, is used to calculate

Ak as in Equation (1.24). Ah is inverted and the result is stored in the filter data file along with

K (produced directly by dLqe), f(t 1 , t+,+), H, and Bd for real-time use by the MMAE algorithm.
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4.3 Investigation of DAM~

The objective of finding an optimal dither is accomplished in this section. The strategy is

to determine each failure condition's sensitivity to the frequency of the dither, and then to do

an analysis to pick a promising frequency, and finally to adjust the magnitude to improve failure

identification time further.

The dithers used are sinnsoidal. Each control surface is controlled by a command input

dither which has the form Asin(wt + 0) where A, w, and # are held constant throughout each

simulation. The phase angle, #, is held constant for all simulations. The effects of varying # are

not presented in a formal study. However, Hanlon [31 stated that a phase difference between similar

control surfaces is essential for MMAE to distinguish right from left failures [3]. The # used here

is a 15o offset between right and left sides for all three sets of control surfaces. In addition, the

effects of control surfaces on dynamic movement of the aircraft may be reduced by phasing right

surface movement 1800 out of cycle from the left surface. In selecting a phase offset, the desired

effect is a balance of aircraft state excitation and control surface movement. With no phase offset,

little surface movements cause moderate changes in aircraft states. With considerable phase offset,

the control surfaces end up moving quite a bit because they are fighting each other in the flight

control system's attempt to reach the level of aircraft state excitation required by the left and right

command inputs. This effect is presented in detail on page 4-35 when elevator actuator failures are

discussed. A balance of aircraft state excitation and control surface movement is achieved by using

the following phase relationships determined in preliminary experimentation.

0. = 00

= 1950

3= 0 (4.5)

= 2250

= 600

= 2550
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Variations in phase would add another dimension to our research. So, in the interest of time savings,

the relationships of Equation (4.5) are held constant throughout all testing done to develop the

optimal dither.

Increasing dither magnitude has the effect of decreasing failure identification time for all types

of failures, with few exceptions (roll rate sensor and roll angle sensor). This is known both intu-

itively and by exercising the MMAE system. This inverse relationship will be used after adjusting

frequency simply because magnitude adjustment has a known effect. The dither magnitudes are

varied in discrete intervals across a range. Thus, our dither magnitude space is discretised to these

values: 2, 3, 4, 5, 6, 7, and 8. No finer discretisation will be used due to length of time it takes to run

each simulation. The frequency study is accomplished with a base magnitude of 6 degrees/second

for both the pitch rate and roll rate command inputs, and the sideslip angle command base mag-

nitude will be 6 degrees for the rudder input commands. These magnitudes have the quality of

providing great enough state excitation to allow the MMAE to consistently identify failures over

the band of test frequencies.

The the effects of varying the frequency component, w, are studied first. There are base

frequencies which are multiplied by a frequency factor to get the range of test frequencies in a

discretized space. The factors are: 1/16, 1/8, 1/4, 1/2, 1, 1.9, 2, 2.5, 3, and 4. The base frequencies

are 6.6611 rad/sec for the elevators (near the short period natural frequency) and 3.6193 rad/sec

for the ailerons and rudders (near the Dutch roll natural frequency). However, the selection of the

base frequencies should be considered somewhat arbitrary, ab they will be multiplied by the stated

factors to arrive at various test frequencies.

The presentation of data is in table and companion figure format. Table 4.1 and Figure 4.1

will be used in the following explanation. Remember that dither frequency is the test variable. We

are looking for its effects on "Failure ID Time" and "Vertical Acceleration" as labeled in the left-

most column of Table 4.1. Trial numbers at the top of each column are numbered with ascending

dither frequency, not necessarily in the order that they were performed, for the ease of the reader.

An exhaustive array of statistics for vertical g-forces is given for each trial, so that a rough but

accurate distribution curve may be visualized to gain a feel for the acceleration environment on

board the aircraft. The top plot of Figure 4.1 gives a graphical representation of this statistical
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distribution. The ±2a _;atistics are what will be compared against the g-limits in both the vertical

and horizontal directions. Now, refer to the bottom plot of Figure 4.1. Here, only the ±2a statistics

are plotted against vertical acceleration and failure identification time. Each trial is represented

by an X. The connecting lines are straight from point to point (no best-fit lines). For clarity, trial

numbers are not placed next to the X's although they could easily be correlated to trial numbers

by matching "Failure ID Time" from Table 4.1 to the "Time to identify failure" on the abscissa of

Figure 4.1.

An interesting feature of thebe plots is that, for higher frequencies, the ±21 bounds are fairly

linear and symmetric about the acceleration = 0 g line. As the frequencies go lower, the failure

identification times hit a "brick wall" and the accelerations are no longer symmetric but tend to drift

in one direction together. This is due to the short time of simulation as compared to the time period

of the low frequency dither cycle. Since the dither cycle was not completely finished by the end of

the simulation, the acceleration samples cannot be evenly distributed about a mean of zero. If the

tests are re-run, the simulation duration should last for an integer number of dither cycles so that

an even distribution of acceleration statistics may be obtained. However, these lower frequencies

will have other reasons for being undesirable candidates for the optimal dither. Generally, the low

frequency dithers caused high g-loading as compared to dithers of higher frequetcy and identical

magnitude. This is because the aircraft's Bode responses have a much higher gain at the low

phugoid frequency (wph = 0.2484 rad/sec) and low spiral divergence frequency (Wav,, = 0.0231

rad/sec). See Appendix B. Even though the lowest frequency tested in our research is higher than

those of the phugoid and spiral modes, the trend toward higher gain with lower frequency does

have its effects in our results.

The next 25 pages contain the companion plots and tables for, first the longitudinal channel

actuators and sensors, and then the lateral channel actuators and sensors. The order of presentation

is different from that of Table 3.4 because it is more convenient to group the actuators with the

sensors they influence for purposes of analysis. The reader is encouraged Wo browse through these

pages at leisure before a detailed analysis of these results is presented beginning on page 4-35.
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Right Elevator Actuator Failure
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Figure 4.1 g-forces vs ID time for Right Elevator Actuator failure as frequency changes.
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Left Elevator Actuator Failure
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Figure 4.2 g-forces vs ID time for Left Elevator Actuator failure as frequency changes.
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Forward Velocity Sensor FAixe
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Figure 4.3 g-forces es ID time for Forward Velocity Sensor failure as frequency changes.
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Ankge of Aftak Sensor Faikee
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Figure 4.4 g-forces, vs ED time for Angle of Attack Sensor failure as frequency changes.
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Ptch Rat Sensor Failure
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Figure 4.5 g-forces vs ID time for Pitch Rate Sensor failure as frequency changes.
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Ptch Angle Sensor Failure
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Figure 4.6 g-forces vs ID time for Pitch Angle Sensor failure as frequency changes.
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Right Aeron Acua Failure
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Figure 4.7 g-forces vs ID time for Right Aileron Actuator failure as frequency changes.
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Left Aileron Actuator Failure
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Figure 4.8 g-forces vsaED time for Left Aileron Actuator failure as frequency changes.

4-22



16 ~ ciC ic

0 ~ 00

ac

Go o w 6ci9

ao cs 9 8 t V-4

0 b _ 4__ 0__D__

U- D 0k 0go '.4 00 OO

vie 'o C 0 1

0 0 010!qCR I

b- CDC 99C

v4 .4 0= 04-V0

ý91 to 1 CD CD 9

to 61 q - * - 10

oo Q 10Oww00 m C
C4eq 0DM t L 1c C -C

w 0 0C Go o a, 0

00 t- eq - C

44. A . co 4w "1

o D to' ?C5

UC 4  m -- . o

+ +

4-23



Right Rudder Actuator Failure
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Figure 4.9 g-forces vs U) time for Right Rudder Actuator failure as frequency changes.
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Left Rudder Aclubaor Failure
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Figure 4.10 g-forces us ID time for Left Rudder Actuator failure as frequency changes.
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Sideslip Angle Sensor Failure
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Figure 4.11 g-forces vs ID time for Sideslip Angle Sensor failure as frequency changes.
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Rol Rate Seusor Failure
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Figure 4.12 g-forces vs ID time for Roll Rate Sensor failure as frequency changes.
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Roll Angle Sensor Failure
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Figure 4.13 g-forces Vs E]) time for Roll Angle Sensor failure as frequency changes.
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Yaw Rate Sensor Failure
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Figure 4.14 g-forces va ID time for Yaw Rate Sensor failure as frequency changes.
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4.2.1 Analysi. of MMAE Performance Against Varying Dither Pvequncy. The data

presented in the previous pages is now analyzed with the purpose of determining the optimal

combination of sinusoidal dither frequency and magnitude. Criteria are that vertical g-forces do

not exceed 0.1g, horizontal g-forces do not exceed W.2g, the aircraft remains stable while being

dithered in the fully functional configuration, false alarms are minimized, failure identification time

is minimized, and travel limits on control surface deflections are not violated. MMAE performance

on ealh failure condition is analyzed in detail to determine the best dither for the particular failure,

then the results of the individual analyses are combined to arrive at a best overall dither. We begin

with the longitudinal channel.

For the right and left elevator actuator failures, a trend toward faster failure identification

times as frequency decreases is broken at Trial 3 where w = 1.6653, as seen in Figure 4.1 and

Table 4.1, as well as Figure 4.2 and Table 4.2. Of special note here is that the commanded elevator

angles violate the limits given in Table 3.2 at the low frequency dithers of Trials 1, 2, and 3.

The elevator travel limit violation is due to the out-of-phase dither and the effect of the

flight control system. Recall that the longitudinal flight control system is divided into left and

right channels (Section 3.2.2). While each channel commands its own surface, both channels are

controlling the same aircraft state, q, pitch rate. If the pitch rate desired by both channels is not

the same, extra elevator surface deflection is commanded by each flight control system channel

to achieve their desired, but respectively different, commanded pitch rates. One channel tries to

overpower the other. This is not a problem at higher frequencies because of the lag of the flight

control system. Here, the high commanded pitch rate changes to a low rate before the elevator can

be commanded to deflect outside of its limits. This lag effect ceases to keep elevator surfaces within

limits at low frequencies. However, instead of stopping at the limit, our linearized discrete-time

aircraft truth model of Equation (3.1) allows for out-of-limit commands. Therefore, responsibility

lies with the researcher to check the commanded surface deflections manually. Routines to warn

of control surface position and rate limits could have been added to the software, however, the

additional computational load would increase the time required to run simulations, and the state-

space model provided by Simulink [9] does not facilitate monitoring or modification of intermediate

states easily.
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Besides the limit violations at low frequencies, Figure 4.1 exhibits a shallow slope across

the higher frequencies. This would indicate that failure identification time is not a function of

g-loading. Rather, failure identification times seems to be more related to the degree of surface

deflection. Indeed, detailed analysis reveals that the elevator surfa *nements occupy a greater

percentage of the deflection range on simulations yielding shorter identification times than of those

with longer identification times. And, as discussed above, lower frequency dithers result in greater

surface deflection for the same dither magnitude.

For the forward velocity sensor failure, a random cluster of failure identification times be-

tween Trials 4 and 10 is noted in Figure 4.3 and Table 4.3. This lack of definite trend in failure

identification times for frequencies above w = 3.3306 rad/sec may be explained by the Bode plot of

forward velocity response to elevator deflections Iu(w)/6.(w)I shown in Figure B.1. The response

beyond w = 3 rad/sec is more than 50 dB below the peak magnitude. With such a small response to

elevator input, one would expect the random system inputs to exercise more influence over MMAE

failure identification times than the elevator dithers.

At the lower end of the spectrum for dither frequency, failure identification times go solidly

to 0.10 sec, which is the shortest time possible with our MMAE design (see Subsection 3.3.1). Our

conclusion, therefore, is that short forward velocity failure identification times will be realized with

decreasing dither frequency.

For the angle of attack sensor, failure identification times are well correlated with the Bode

plot of angle of attack response to elevator input shown in Figure B.2. Note that the Ia(w)/6.(w)I
response has a steep drop-off after w = 7 rad/sec. This frequency corresponds closely with Trial 5

of Table 4.4. Failure identification times at lower frequencies are consistently short while those at

higher frequencies are an order of magnitude longer. Thus, we see a close correlation between the

Ia(w)/16(w)I magnitude response and angle of attack failure identification time.

For the pitch rate sensor failure, a different trend is noted. Figure 4.5 and Table 4.5 show

a definite reversal of the trend towards shorter failure identifitation times with lower frequency

dithers. A study of the Bode plot for pitch rate response to elevator input Iq(w)/6.(w)j shown

in Figure B.3 does not explain this reversal. The magnitude response might suggest a failure

identification time trend that is inverse to that of actual testing, considering only the discrete
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frequencies tested. That is, the dip in response magnitud between 0.5 rad/sec and 3 rad/sec

might lead one to predict longer failure identification times for these frequencies. However, this is

not the case. Rather, the best identification times are found in this interval.

Why does the pitch rate sensor behave differently from the other sensors? An explanation is

supported by the fact that the pitch rate state is controlled by and provides feedback to the flight

control system. A thorough discussion is found in Section 5.2.

For the pitch angle sensor failure, the trend is consistent with that found for the forward

velocity sensor. Indeed these two sensors have similar responses to elevator inputs (see Figures B.4

and B.1) and neither sensor provides feedback to the flight control system.

With the characteristics of each type of failure identification in mind, we now move toward

selecting the optimal frequency and magnitude of the sinusoidal dither to be applied to the longitu-

dinal channel. Only one set of parameters will be chosen because (a) elevators are the only means

of inputting dithers, and (b) we must limit the scope of our research. A better solution may be to

superimpose one sinusoid of differing frequency and magnitude on another sinusoid, by means of a

linear combination for example.

For the elevators, the limiting factor is control surface travel limit violations at low frequencies.

The best dither could be at w = 3.3306 or w = 6.6611. Both Trials 4 and 5 of Table 4.1 show that

the vertical g-limits of 0.1 g are not violated except in Trial 4 where -2a is 0.1058, accepted as

within limits due to the course discretization of the test parameter space. The forward velocity

sensor, angle of attack sensor, and pitch angle sensor failures are more quickly identified at very

low frequencies. So, this factor will direct us to a lower frequency, if given a choice.

Finally, the fastest pitch angle failure identification time is detected at a dither frequency

of w = 1.6653. However, the vertical g-limits are broken at this frequency, as shown in Trial 3 at

Table 4.5. The elevator failure identification time at this frequency is not significantly different from

that of w = 3.3306. The elevator surface travel limit violation at this frequency may be resolved by

lowering the magnitude of dither at w = 1.6653, which must be done anyway to reduce g-loading

to within limits. So, we are left with a choice: in order to meet the vertical g-limits, do we lower

the dither magnitude at w = 1.6653, or do we increase the dither frequency to w = 3.3306?
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Table 4.15 Comparison of Reducing Dither Magnitude versus Increasing Dither Frequency to
Reduce Vertical g-forces.

Trial 3 3.1 3.2 4
Elevator Dither

Magnitude [deg/sec] 6.00 5.00 4.00 6.00
Frequency [rad/sec] 1.6653 1.6653 1.6653 3.3306

Failure ID Time [sec]
Al 0.24 0.29 0.33 0.22
A2 0.23 0.25 0.29 0.20
S1 0.58 0.83 0.93 1.17
S2 0.10 1.34 2.26 0.68
S3 0.33 0.42 0.47 0.37
S4 0.93 1.05 1.19 0.95

Vertical Acceleration [g's]
+2ar 0.1053 0.0839 0.0722 0.0878
-2. -0.1512 -0.0904 -0.0777 -0.1058

Additional simulations with w = 1.6553 and dither magnitudes of 5 deg/sec and 4 deg/sec

were made. The results are found in Appendix D but are compiled in Table 4.15 for our convenience.

Trials 3.1, 3.2, and 4 all fall within g-limits. Trial 3.2 merely illustrates the trend toward longer

failure identification times with decreasing dither magnitude. So, of Trial 3.1 (reduced magnitude)

and Trial 4 (increased frequency), which yields better failure identification times in general? Except

for the forward velocity sensor, S1, all failures were identified more quickly at a dither with a

magnitude of 6 deg/sec and at a frequency of 3.3306 rad/sec. Thus, our optimal longitudinal

dither is concluded and stated in Equation (4.6), on page 4-42.

Our next task is to find an optimal dither for the lateral channel by specifying a sinusoidal

frequency and magnitude. This dither will be applied to both channels of the roll rate command

and both channels of yaw angle command, as shown in Figure 3.1.

First, we consider the aileron actuator failsrea. Unlike the elevators, the aileron surfaces were

never commanded outside of their limits (see Table 3.2) for any set of test conditions. However, 63%

of their range is used when dithering at the low frequency of 0.2262 rad/sec and roll rate dither

magnitude is 6 rad/sec. As seen in Figures 4.7 and 4.8 and Tables 4.7 and 4.8, shorter failure

identification times are realized with lower frequency dithers. As frequency decreases though, the

"brick wall" effect is seen at about Trial 5 where w = 3.6193. Similar analysis applies to the rudder
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actuator jfiaree. Trial 5 marks the point where little gain in failure identification time is realised

for a large penalty in horizontal p-loading. Still, the 12a bounds of Trial 5 are outside of the ±0.20

horizontal g-limit. Frequency must be increased to 7.2386 rad/sec, as in Trial 7, before the ±2w

bounds of g-loading are within limits.

The duledip angle sensor failure data is shown in Figure 4.11 and Table 4.11. This sensor

provides feedback to the flight control system so that the sideslip angle aircraft state may be

controlled. The erratic distribution of failure identification times at both ends of the spectrum

might be explained by the poor quality of sideslip angle sensor measurements. As seen in Table 3.3

on page 3-7, the variance associated with the sideslip angle sensor, Rp, is the worst of all angle

sensors. If sensor measurements are very noisy, the Kalman filter is more inclined to believe its

internal model rather than the information found in incoming measurements. The fully functional

filter residuals generally remain unchanged in character through an induced sideslip angle sensr

failure, except for the rp residual. This residual generates a short duration spike which is likely to

be disregarded by the Kalman filter. The only remaining clue to a change in performance is found

in the rp residual of the filter hypothesizing a sideslip angle sensor failure, which immediately goes

to zero-mean, low variance. There is a definite shift of failure times to the right with increasing

dither frequency in Figure 4.11. This information is useful in helping us to select Trial 4 or 5 as

having the best, most reliable dither parameters.

For the roll rate sensor failure, Figure 4.12 and Table 4.12 show that the identification times

are clustered around 0.7 and 0.8 seconds. Were it not for Trial 1, no trend could be detected.

Therefore, we will not conclude that there is a trend except that, regardless of frequency chosen,

an identification time of around 0.75 seconds will result. Again, this sensor provides feedback to

the flight control system.

The roll angle sensor failure identification times can be correlated to the Bode plot of

j0(w)/.(w)I in Figure B.7. At low frequencies there are high gains and short identification times.

The ±2-- trace of Figure 4.13 has a "Z"-shape around Trials 6, 7, 8, and 9. This gives the

impression that there is some notch dither frequency where the MMAE has better response than at

the surrounding dither frequencies. This is not likely to be the case. Random effects of wind gusting

may play a bigger part in failure identification times since the aileron surfaces are commanded to
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deflect over only 8% of there travel range for each of Trials 6 through 10. The usefil conclusion

here is that lower frequency dithers yield better failure identification times.

The yw rate sensor failure is a unique situation. Although the yaw rate sensor provides

feedback to the flight control system, the low frequency output of this sensor is attenuated by the

washout filter. This is a high pass filter with a break frequency at about 1 rad/sec. The impact

is that, for rudder dither frequencies below 1 rad/sec, a yaw rate sensor failure might be treated

like the failure of a sensor that is not providing feedback to the flight control system. That is,

under this condition, scalar residual monitoring in the fully-functional-aircraft filter could be used

effectively.

Table 4.14 and Figure 4.14 reveal a definite uZ"-shape pattern with Trials 1, 2, and 3 making

up the top, Trials 3, 4, and 5 defining the diagonal, and Trials 5, 6, and 7 tracing the bottom.

An interesting correlation is made with the Bode plot of Figure B.12. Specifically, the magnitude

transition from the local minimum at 0.4 rad/sec to the local maximum at 3.7 rad/sec contains the

frequencies of Trials 3, 4, and 5, the diagonal of the "Z" of Figure 4.14. Further study provides one

with convincing evidence that the Bode log-magnitude plot correlates with the failure identification

times. So, even though the yaw rate sensor provides feedback to the flight control system, because

the low frequencies are attenuated, this allows the MMAE response to a yaw rate sensor failure to

be more like that of a sensor that does not provide feedback to the flight control system. The "Z"

of Figure 4.14 is valid, so our best dither for the yaw rate sensor failure is that of Trial 5.

In summation, the lateral channel components compel us to choose the dither frequency of

Trial 5, 3.6193 rad/sec, as the best candidate for optimal dither. However, the horizontal g-load

caused by the parameters of Trial 5 are outside of the ±0.2g limits. Again, we must decide whether

to lower the dither magnitude or increase the dither frequency to that of Trial 7 in order to meet

this criterion. Table 4.16 presents the compiled results of varying dither magnitude at the Trial 5

frequency, along with the results of Trial 7 for comparison. The details of Trials 5 through 5.3 are

presented in Figures D.7 through D.14, with companion Tables D.7 through D.14, in Appendix D.

Referring to Table 4.16, we see that the 5-series trial with the lowest failure identification times

and g-forces within limits is Trial 5.2. The +2a bound is violated but judged acceptable in light

of the coarsely discretized dither magnitude space. Comparison of the failure identification times
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Table 4.16 Comparison of Reducing Dither Magnitude ve-sts Increasing Dither Frequency to
Reduce Horizontal g-forces.

Trial 5 5.1 5.2 5.3 7
Aileron Dither

Magnitude [deg/sec] 6.00 4.00 3.00 2.00 6.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193 7.2386

Rudder Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00 6.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193 7.2386

Failure ED Time [sec]
A3 0.24 0.52 0.79 1.87 0.84
A4 0.23 0.30 0.36 0.99 0.75
A5 0.56 0.90 1.20 1.72 2.75
A6 0.53 1.00 1.40 2.38 5.34
S5 1.77 2.42 2.78 3.53 3.43
S6 0.70 0.75 0.69 0.73 0.87
S7 0.80 0.27 0.22 1.51 1.19
S8 0.75 0.85 0.97 1.11 1.17

Horisontal Acceleration [g's]
+2. 0.3304 0.2631 0.2043 0.1476 0.1954
-2or -0.2989 -0.1802 -0.1399 -0.1343 -0.1784

in Trial 5.2 with Trial 7 tells us that the best choice is to reduce the dither magnitude rather than

increase the dither frequency to meet the g-limits.

Therefore, the optimal dither for the lateral channel will have magnitude 3 deg/sec and

frequency 3.6193 rad/sec for the roll rate command, and magnitude 3 degrees and frequency 3.6193

rad/sec for the sideslip angle command. Actual performance of our optimal dither is evaluated in

the next section.

Possibly, a better solution for the lateral channel would feature separate dither parameters

for the rudder and ailerons. Indeed, the roll rate and roll angle aircraft states respond to low

frequency dithers, which could be applied to the ailerons, while the higher frequency of Trial 5

could be applied to the rudders for quick response of the MMAE to sideslip angle sensor and yaw

rate sensor failures. Furthermore, two sinusoids of different frequencies and magnitude could be

superimposed to stimulate the MMAE to respond to both high- and low-frequency-sensitive failures.
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A much moe complicated analysis is required to investigate these proposals, so in the interest of

time, they are not pursued in this thesis.

4.2.2 Opfimal D1)ler. The optimal dither performance is shown in Figure 4.15. Each

plot shows the response of the MMAE for the filter that matches the failure induced. An expanded

presentation is provided in Appendix E. The command inputs are dithered with the signals shown

in Equation (4.6):

Right pitch rat- command = 6.0 x sin(3.3306t + , deg/sec

Left pitch rate command = 6.0 x sin(3.3306t + i..) deg/sec

Right roll rate command = 3.0 x sin(3.6193t + ) deg/sec (4.6)

Left roll rate command = 3.0 x sin(3.6193t + C.) deg/sec

Right sideslip angle command = 3.0 x sin(3.6193t + ,,,) deg

Left sideslip angle command = 3.0 x sin(3.6193t + #,) deg

Note that the longitudinal sensor responses, S2, S3, and S4, are not as fast as would be predicted

by Trial 4 of Tables 4.4 through 4.6. This may be attributed to two factors. Consider that Trial

4 of Tables 4.4 through 4.6 had elevator dithering at w = 3.3306 rad/sec and aileron dithering at

w = 1.0896 rad/sec, a lower frequency than that of the elevators. Recall that the ailerons are cross

coupled into the longitudinal channel according to terms in B of Equation (3.1). Next, recall that

longitudinal sensors had the best failure identification times at lower frequencies such as w = 0.8326

(see Trial 2 of Tables 4.3 and 4.6) and w = 1.6653 (see Trial 3 of Tables 4.4 and 4.5). The two factors

of low frequency aileron dithering and aileron cross coupling into the longitudinal axis can account

for the seemingly good failure identification times of Trial 4. Once the low frequency component was

removed, as in our proposed optimal dither (Equation (4.6)), the longitudinal sensors responded

more slowly to the higher frequency as in Trial 5 of Tables 4.4 through 4.6.

Obviously, in the interest of obtaining consistent test results, our frequency response tests

should have been conducted with the aircraft being subjected to only one frequency at a time. The

base frequencies mentioned in Section 4.2 should have been identical for the elevators, ailerons,

and the rudders. With the preceding analysis re-accomplished under these conditions, an optimal

dither would have been more accurately predicted. However, the analysis of the preceding paragraph

4-42



First failures induced at 4.00 S. u) .5

Average of 10 Monte Carlo runs. 2 4 6 8 10 12

2• 4 6 8 10 12 4 6 8 10 12

4__s.__,_, ~4.45s., , ,4 6 8 10 12 2 4 6 8 10 12

O 1 422_ __S. ,4.14 S.

4 6 8 1'0 1'2 2: 4 6 8 10 12

c4,79 S. . k S.7 , ,2 4 6 8 10 12 2 4 6 8 10 12

, 4.36S. , , 4.69S., , ,2 4 6 8 10o 12 2 6 8 10 11 4c.20s. 4.22s.

2 4 6 8 10 12 2 4 6 8 10 12

j <5.40 S. CI 4..97 S.s.
2 4 6 8 10 12 2 4 6 8 10 12

Time (sod] Time [see]

Figure 4.15 MMAE Filter Probability Plots with the Optimal Dither Technique.
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indicates that one might successfully use ailerons to induce the low-frequency excitation into the

longitudinal channel to improve MMAE response to S2, S3, and S4 failures while maintaining a

higher frequency, low-magnitude dither on the elevators for good elevator actuator failure detection.

This is a complex relationship because the aileron dither also affects failure identification times for

sensors $5-S8 and the aileron actuators. Therefore, we restrict the design of aileron dither to

provide excitation for only lateral sensors, and elevator dither design to excite only longitudinal

sensors. However, a linear combination type of dither signal might warrant investigation in the

future.

4.3 Pilot Command Inputs

During normal flying operations, the LAMBDA pilot is constantly providing command inputs

to the flight control system. To see what the effects of his/her input commands are on the aircraft

in terms of g-loading and MMAE performance, flight data was obtained from Wright Laboratories

[26] to apply to the truth model and MMAE program. The command input data provided was

in the form of an ASCII file with vectors of single channel stick inputs for pitch rate, roll rate,

and sideslip angle. The data was recorded in real time at 60 Hz, even though the LAMBDA FCS

operates at 50 Hz as our truth model does. To convert the 60 Hz data to 50 Hz data, every sixth

datum was removed from each vector. This method of conversion was used in preference to curve

fitting and re-discretizing because of its simplicity. Of more concern is that these pilot inputs are

being applied against computer-generated wind perturbations to which this pilot is not reacting.

Without actually flying an MMAE-equipped LAMBDA in real-time simulation, the effectiveness of

pilot command inputs as a dither technique will remain an unknown.

A further modification is that the single channel data for each control axis was simply du-

plicated and applied to the two channels of each control axis of our truth model. The applied

command inputs are shown in Figure 4.16 along with the g-loadings calculated by our truth model.

The data series was taken from a pitch-up maneuver. The complete maneuver consists of

a positive-negative doublet applied to the pitch rate input, followed by commands to level and

straighten the flight path. The portion of data shown in Figure 4.16 and used in the present

simulation is only the part to level and straighten the flight path. The ordinate labels are defined
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as follows: Ecmd Rt - right channel pitch rate command (E for elevator); Ecmd Lt - left channel

pitch rate command; Az - vertical acceleration; Acmd Rt - right channel roll rate command (A for

aileron); Acmd Lt - left channel roll rate command; Rcmd Rt - right channel sideslip angle command

(R for rudder); Rcmd Lt - left channel sideslip angle command; and Ay - horizontal acceleration.

Each of the failed conditions are applied to the truth model at 4.0 seconds. The MMAE filter

probability traces are shown in Figure 4.17.

Only one Monte Carlo run was made for each failure condition because we desire to present

a representation of what would happen on one real flight, without the added complications of

compressing many runs into a plot of averages. Wind was included at the same strength as for

previous simulations. Note the difficulty the fully functional filter has in maintaining lock on a

fully functional aircraft. Even so, no false declarations were made. For actuator failures only, the

right elevator and left aileron were identified in 2.24 and 1.04 seconds, respectively, while the left

elevator and right aileron were not correctly identified. Figure 4.18 shows a solid 50-50 sharing of

probability between failed rudder filters when either rudder is failed by itself. Because neither one

nor the other attained a probability of greater than p~rRtG = 0.5, no failure was identified. However,

the algorithm has, in fact, correctly identified that a rudder failure has occurred in both cases, but

it is not sure which one failed. This is a clear indication of the need for out-of-phase dithers when

cross-coupling terms are not included in the model.

All sensors were correctly identified and all identification times except that of the sideslip

angle sensor failure were better than those of the optimal dither in Figure 4.15. However, note that

the vertical acceleration limit of 0.1 g has been severely violated in the Az plot of Figure 4.16. Also,

the horizontal g-limit of 0.2 g is severely violated in the Ay plot. These violations disqualify this

particular pilot dither routine from being called an "opmnnal dither". Note finally that the spiking

beginning at 9 seconds in the S8 plot is a result of the aircraft going unstable. This phenomenon

is discussed in Section 5.1.
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Figure 4.17 MMAE Filter Probability Plots when Command Input is Pilot's Effort to Fly Straight
and Level.
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Figure 4.18 MMAE Filter Probability Plots for all Bank 0 Filters when only the Right Rudder
Failure is Induced at 4.00 seconds. Command Input is Pilot's Effort to Fly Straight
and Level. Note Shared Probability between Right and Left Rudder Filters.
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4.4 Dud Failure Pedrmsce

The optimal dither technique of Subsection 4.2.2 is used to command the truth model when

it is subjected to two failures spaced apart by 1 second. All combinations of all fourteen possible

actuator and sensor failures are tested in simulation. Criteria for successful performance is that a

filter hypothesizing both the induced first failure and the induced second failure holds a window-

averaged probability (see Subsection 3.3.1) above the trigger limit of PrjuG = 0.5 at the end of the

12 second simulation, with no false alarms in between.

The presentation format allows the reader to view averages of ten Monte Carlo runs. As an

example, consider Figure 4.19. When the fault declarations are consistent from run to run, this

format is clear and easily understood. Each pair of plots in a row are the average probabilities of

the set of ten runs with the same failure parameters. The plot in the first column is the probability

of the filter that was declared to have the first failure. This filter is a secondary filter in level-0,

which becomes the primary filter in level-I at the time of the first failure declaration. The plot

in the second column starts off as the probability of a secondary filter in level-0 but changes to

the secondary filter in level-I which hypothesizes the first failure detected and the second failure

detected. The change is denoted by a vertical dash-dot line. This compact format eliminates the

need to display all of the non-relevant filter probabilities from both level-0 and level-1. However,

this format does become confusing when the order of MMAE fault declaration changes from run to

run. In this case, acceptable performance may have been achieved, but the only way to represent

this graphically is to show probabilities from each Monte Carlo run. Therefore, a short narrative

is given to make clear what is not evident in the plots.

Two pages are devoted to all of the simulations with identical first failures. The first page

of the pair shows performance with actuators as the second failures (Figure 4.19); the second page

shows performance with sensors as second failures (Figure 4.20).

When the first failure is of the right elevator actuator, Al, all actuators as second failures are

successfully identified. A2, the left elevator actuator, is identified as the second failure 0.56 seconds

after it is induced. This is a longer time that it took to identify A2 as the first failure, as shown

in Figure 4.15 even though MMAE probabilities seem to be solidly at steady state after the first

failure. This extended failure identification time may be explained by noting that the filter tuning
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process favors the identification of a fully functional filter which is still present in the level-i bank.

So, when the second filure occurs, probability must not only be transferred to the new dual failure

filter, it must avoid going back to the fully functional filter.

Another explanation for the longer identification time required for a second failure is that

this failure is induced at 5 seconds in the dual tests rather than at 4 seconds, as in the the single

failure tests. The impact is that the dither signal inputs are making different transitions at these

two times. The conjecture is that a failure is more quickly identified if it is induced during a period

when the time differential of the input is high. To draw a parallel, this condition exists between

two simulations with different dither signal magnitudes. In the cases shown in Appendix D, it is

clear that the higher magnitude inputs result in quicker failure identification times, as anticipated.

The rest of the dual failure probability plots are presented in Appendix F, which has the filter

codes of Table 3.4 re-printed as an aid, but discussion is presented below. All dual failures were

correctly identified and no false alarms were detected with the left ele-ator actuator as the first

failure. Figure F.A shows good MMAE performance when the left elevator fails first and actuators

fail second. Figure F.2, as consistent with Figure 4.20, reveals that excellent identification of

longitudinal sensors is obtained when one elevator actuator is failed. Loss of one elevator actuator

gives the remaining control surface complete control of the longitudinal states without competition

from out-of-phase deflections the opposite surface. The result is that these states are excited more,

which leads to enhanced failure detection.

All dual failures were correctly identified and no false alarms were detected with the right

aileron actuator as the first failure. Figures F.3 and F.4, however, do not necessarily give that

impression. Consider the top row of two plots in Figure F.3. The actual results are that the Al

filter was identified as the first failure in 2 of the 8 Monte Carlo runs in which the A3 filter was

correctly identified second. Similarly, in the plots of row 7 of Figure F.4, the corresponding test

result was that the S7 filter came first in 3 of 10 runs.

Understanding the highly condensed information contained in the dual failure plots takes

careful consideration. The reader is encouraged to pause at this point and refer back to the

hierarchical structure in Figure 1.2 on page 1-14. Recall that all level-0 filters hypothesize only one
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or zero component failures. When two unidentified failures are present, as is the case when the first

failure of our test is not identified in less than one second, the MMAE algorithm has a choice. In

the present situation, it may choose the A3 failure and switch to the A3 bank or it may choose the

Al failure and switch to the Al bank. Upon switching to a new bank, our data gathering routine

continues to use the same 15 storage locations to track probabilities of level-I filters as it did to

track level-0 probabilities. Data for the Al filter in level-0 is appended with data for the A3A1 filter

when the bank is switched to the A3 level-I bank. Data for the Al filter continues to be Al filter

data when the bank is switched to the Al level-1 bank. This is not a problem when all of the ten

Monte Carlo runs switch banks in the same order. However, if there is an order reversal between

runs, the reader must realize that the averaged probability plot starting out as the A3 filter ends

up as averaged probability composed of 80% from the A3 filter (when the MMAE switched to bank

A3 first in 8 of 10 runs) and 20% from the AIA3 filter (when the MMAE switched to bank Al first

in 2 of 10 runs).

Massive amounts of data would have to be published in order to gain a completely clear

understanding. Therefore, this reliable and detailed narrative should be followed closely.

All dual failures were correctly identified and no false alarms were detected with the eft

aileron actuator as the first failure. Trends of Figures F.5 and F.6 are similar to those for the right

aileron actuator as the first failure.

All dual failures were correctly identified with the right rudder actuator as the first failure.

However, false alarms of a left rudder actuator failure were detected when the second failure was

the yaw rate sensor, S8. This is to be expected since the aircraft becomes unstable with a yaw rate

sensor failure; see Section 5.1. Detailed data from simulations with these failed components show

that the false alarms came up after 10 seconds, well after the two correct identifications were made.

All dual failures were correctly identified with the eft rudder actuator as the first failure.

On one run with the left rudder actuator failed first and the right aileron failed second, a unusual

event occurred. A left aileron actuator failure was falsely identified firt, the right aileron actuator

failure was correctly identified second and subsequently, 9 failure status switches occurred between

the A4-A3 filter and A4-A6 filters. Both of these filters are incorrect. The correct final filter should

be the A6-A3 filter or the A3-A6 filter, depending on the order of correct failure identification.
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Since the incorrect filter was identified first, the MMAE switched to the wrong level-I bank which

contained neither of the correct filters that match the actual dual failure status. As a result, the

MMAE became indecisive about the next best decision, given that the absolute best choice was not

available. This accounts for the wavering of probability on the row 3 plots of Figure F.9. There

were three runs with false alarms for the right rudder actuator when the yaw rate sensor was failed

second. This is easily attributed to the ,ircraft instability caused by the loss of the yaw rate sensor

feedback to the flight control system (mee Section 5.1). The only peculiarity is that there are fewer

false alarms when the yaw rate sensor is failed along with a rudder actuator. This does make sense

when one considers that the flight control system uses the rudder actuators to induce this aircraft

instability.

All dual failures were correctly identified with the forward velocity sensor as the first failure.

On one run with the right aileron actuator failing second, the left aileron was incorrectly identified as

the first failure, the right aileron was correctly identified as the second failure. Again, the incorrect

Jirst failure declaration prohibited the MMAE from declaring the correct dual failure status because

the selected level-I bank of elemental filters, having a failed A4 as its primary hypothesis, does not

include the correct dual failure hypotheses of A3-S1 or S1-A3. MMAE filter probability shifts

between filters A4-A3, A4-S1, and A4-FF six times before the end of this one particular simulation.

Proper detections occurred on all other runs with the same failure parameters. The yaw rate

sensor as the second failure produced 4 false alarms of the right aileron actuator in 3 of 10 runs.

In all cases, the first two failures declared were correct, with the false alarms coming at a later

time, which we will consider as sufficient criterion for proper MMAE performance when a yaw rate

sensor failure is involved. See Figures F.11 and F.12.

There is a software "bug" that was corrected by forcing the MMAE algorithm to change

filter banks only once. The problem is that the algorithm switches filter banks on every failure

declaration. The software correction prohibits a switch to another bank after two failures have

been declared. If bank changes were allowed on every failure declaration, dual failures would cause

constant switching between level-i banks without settling on just one filter hypothesizing both

failures. On the other hand, if the MMAE needs to switch banks more than once, it is deduced

that the system has probably failed any test proposed in this research. Had this limitation been

lifted, an identification of the A4-FF filter would have led to a switch to the level-0 bank. The
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opportunity to identify the correct dual failure status might then have been taken. This limitation

will be suspended to illustrate an important MMAE capability as dual failures with sideslip angle

sensors are analysed shortly.

All dual failures were correctly identified with the eage of anack sensor as the first failure.

There were only three false alarms of a right aileron actuator after correct dual failure status was

declared when the yaw rate sensor failed second. The correct dual failure status was declared

following these false alarms as well. See Figures F.13 and F.14.

All dual failures were correctly identified with the pc rate sesor as the first failure. Only

once did the MMAE identify the left aileron as being failed second when it should have identified the

right aileron. Note that the algorithm correctly identified that an aileron failure had occurred, but

it required some additional time to disambiguate between a right and a left aileron failure. This

is observed as a recurrent phenomenon. The algorithm subsequently identified the right aileron

correctly without further problems. See Figures F.15 and F.16.

All dual failures were correctly identified with the pdtc ang*e sensor as the first failure. On

only one run with the left aileron actuator as the second failure did the MMAE declare a failed

right aileron. The correct failed aileron actuator was subsequently identified. See Figures F.17

and F.18.

All dual failures were correctly identified with the aideship agne sensor as the first failure

with one exception. In this particular case of one run, the sideslip angle sensor failure (S5) was

induced first at 4.00 seconds. The right aileron actuator failure (A3) was induced second at 5.00

seconds. During this simulation, the MMAE identified the failure of the left aileron actuator (A4)

incorrectly at 5.36 seconds and switched to that level-I bank of filters. At 5.88 seconds, the MMAE

identified the fully-functional aircraft filter as the true failure hypothesis, but this time, on a special

run, we allowed the algorithm to switch banks more than one time, so the MMAE switched back

to the level-0 bank. This action shown in Figure 4.21 illustrates the MMAE's ability to recover

from a false first declaration. As the simulation continued, the right aileron actuator was correctly

identified at 6.70 seconds, then the sideslip angle sensor was identified as failed at 8.20 seconds.

So, the MMAE probability ended up with filter A4-S5, which is the desired result. It is important

to note that such a recovery was only required on 3 of 1960 runs, this is less than a 0.2% rate of
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false first detection. For an overview of MMAE performance with the sideslip angle sensor failure

as the first of two failures, see Figures F.19 and F.20.

All dual failures except one were correctly identified and no false alarms were detected with

the roll rate sensor as the first failed component. The missed failure identification was that of

a failed right aileron actuator on one run. There was also one run that switched twice between

correct and partially correct declarations. This was also associated with the right aileron actuator

failure. See Figures F.21 and F.22.

All dual failures were correctly identified with the roll ang&e sensor as the first failure. One

false alarm was detected in which the left aileron actuator failure was identified second instead of

a right aileron actuator failure. The correct failure was subsequently identified. See Figures F.23

and F.24.

See Figures F.25 and F.26 for MMAE probabilities when the law rate sensoris the first failure.

One false alarm was detected in which the left aileron actuator failure was identified instead of a

right aileron actuator failure. The correct actuator was not subsequently identified. On three runs

involving the sideslip angle sensor as the second failure, the MMAE algorithm did not make any

failure declaration. The sideslip angle sensor is used to provide feedback to the flight control system

sideslip angle control loop, as is the yaw rate sensor. The conclusions to be seen in Section 5.2 that

sensors used in flight control feedback are more difficult to identify because of the unusual residual

characteristics may be applied here. Indeed, the residuals corresponding to the sideslip angle sensor

and the yaw rate sensor develop a tighter variance in the fully functional filter after these sensors

are failed. This makes it more difficult to shift probability from the fully functional filter to the

correct filter which develops a change in only one of its residuals.

The additional failure declarations observed may be attributed the aircraft instability caused

by the failure of the yaw rate sensor (see Section 5.1). Therefore, except for dual failures involving

the sideslip angle sensor, Figures F.25 or F.26 show good MMAE performance with dual failures

which include the yaw rate sensor.

Conclusions drawn from our observation of MMAE performance against dual failures are

the following. The hierarchical structure is very effective in identifying two failures in the face of

wind gust uncertainty and sensor noise uncertainty. The hierarchical structure allows the MMAE
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algorithm to identify failures out of the order in which they are induced. No time is wasted in

identifying obvious failures while ambiguity might exist in identifying another failure.

The several missed and false alarms observed were associated with the ailerons in which left

was confused with right. This could be attributed to the fact that, with the optimal dither used in

this test sequence, the ailerons are not commanded to move very much. Had more dynamic range

of the aileron control surfaces been utilized, better identification of left and right aileron actuator

failures would have resulted.

There were three isolated incidents of the MMAE algorithm making false first failure dec-

larations. This caused the incorrect level-1 filter bank to be brought on-line. Due to a software

problem, subsequent bank switches were no allowed. However, this limitation was lifted on one

simulation to illustrate the MMAE's ability to recover from a false failure declaration and go on to

make the correct dual failure identification.

4.5 Chapter Summary

The results of extensive testing and analysis have been recorded in this chapter in support

of the objectives presented in Section 1.5. In addition, the experience of tuning the elemental

Kalman filters is recorded. The tuning algorithm of Section 4.1 was developed out of necessity.

A complicated wind disturbance model made it difficult to tune manually the zero-order wind

disturbances accurately enough to prevent the extremes of sluggish or volatile MMAE performance.

The automatic tuning algorithm prove to be quite effective in maximizing MMAE performance.

The search for an optimal dither technique led to the study of the effects of varying frequency

and magnitude in the sinusoidal command input dithers. The frequency study reveals interesting

relationships between failure identification times and Bode magnitude responses in the identifi-

cation of sensor failures. Sensors involved in feedback to the fRight control system have different

failure identification characteristics as dither frequency is altered. A more in-depth study of this

phenomenon will come in the following chapter. The knowledge gained in the study of various

dither frequencies and magnitudes enabled us to conclude the parameters of an optimal dither.

This dither is optimal with respect to failure identification time, while not violating constraints on

g-loading.

4-58



As an exploratory study, command inputs derived from a real pilot's efforts to fly the airborne

LAMBDA were used to command the computer model of LAMBDA. MMAE failure performance

was evaluated with the pilot's inputs acting as the dither routine. The need for out-of-phase dithers

on the left and right control channels became evident when attempting to identify actuator failures.

However, exceptionally good failure identification times were realized with the aircraft data sensor

failures.

Finally, dual failure performance with the optimal dither was studied. Our conclusion is that

dual failures can be successfully identified with the MMAE algorithm and a hierarchical filter bank

structure. Though failures were not always identified in the order of their introduction, the correct

dual failure hypothesis was consistently declared. Also, one incident of the MMAE's ability to

recover from a false alarm was illustrated.

4-59



V. Secondary Analysea

Chapter IV provided an extensive discussion of the primary objective of this thesis. In the

present chapter, many secondary issues brought up in Chapter IV will be studied. These topics

include the effect of a failed yaw rate sensor on the stability of the aircraft, an in-depth look at

MMAE performance in the face of failures of feedback sensors, and finally, a study of MMAE

response to phugoid frequency dithers at very low magnitude.

5.1 Failure of Yaw Rate Sensor

The failure of any single component used in our failure simulations will result in a controllable

aircraft except for the yaw rate sensor failure, S8. Refer to Figure 5.1. On all MMAE filter

probability plots involving a yaw rate sensor failure, the probability will rise through its transient

response and remain at a level which correctly identifies the yaw rate sensor as failed. After a few

seconds though, the probability drops from a solid identification and deteriorates as time goes on.

This is not due to a faulty characteristic of the MMAE algorithm. Rather, this happens because

the aircraft itself is going unstable.

When the yaw rate sensor is disabled, the flight control system (Figure 3.1) loses its input

to the washout filter which is a compensator in the feedback loop. The stability of the lateral

system is therefore compromised. Dissection shows that the discrete-time state transition matrix

for the augmented truth model with a yaw rate sensor failure has an eigenvalue which lies outside

of the unit circle. The purpose of this thesis is not to stabilize the aircraft under such conditions

as the aircraft would go unstable whether an MMAE system were in place or not. The point is

that the MMAE algorithm correctly identifies the failure well in advance of the aircraft becoming

uncontrollable. The flight control system designer is left with the task of reconfiguring the flight

control system once he/she has been warned about this failed condition.

The reader is therefore warned that the filter probability for the failed yaw rate sensor filter

will always drop off after having shown a solid identification. Know that the cause is due to the

augmented aircraft's instability, not the MMAE's deficiency.
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5.2 Failure of Feedback Sensors

A trend is detected concerning the relative identification time of sensors used for FCS feedback

compared with those not integrated into the FCS. That is, in the longitudinal channel, we see that

failures associated with the pitch rate sensor take longer to identify than failures of the forward

velocity, angle of attack, and pitch angle sensors. In the lateral directional channel, this trend is

seen in the sideslip angle sensor, yaw rate sensor, and roll rate sensor failures having a tendency

to lag in their identification times behind that of the roll angle sensor. One might expect that this

angle sensor would lag behind the other rate sensors because it is the integral of a rate aircraft

state variable. The intent of the following investigation is to modify our beliefs about residual

monitoring on sensor failures when the sensor provides feedback to the FCS.

To establish a baseline for discussion, Figure 5.2 is presented to show the residuals of the fully

functional aircraft filter that is given measurements and control inputs from a truth model that

represents a fully functional aircraft.

Figure 5.3 shows the classical response of a Kalman filter's residuals to a sensor failure.

Residuals from the filter hypothesizing a fully functional aircraft are plotted versus time. At 4.00

seconds, the pitch angle sensor failure is induced and the effect is clearly seen in the pitch angle

residual, theta. A severe discontinuity of the character described in Subsection 1.3.4 is evident. No

significant effect can be detected in any other sensor residual except perhaps that of the forward

velocity sensor. The trace of u appears to oscillate after 4.00 seconds but it is exactly the same as

it would be with no failure induced. Refer to Figure 5.2. So, the induced sensor failure results is

exactly what one would expect: a jump discontinuity followed by oscillations in the residual of the

failed sensor with no change in any other residuals.

The filter hypothesizing the pitch angle sensor failure produces the residuals in Figure 5.4

when receiving measurements and actuator command inputs (see Figure 5.6) identical to those

processed by the fully functional filter of Figure 5.3. The pitch angle residual of Figure 5.4 clearly

shows a change to zero-mean while the other residuals remain unchanged. Figure 5.5 shows the

dithers applied to the flight control system of Figure 3.1. These plots can be used to pick out

dither oscillations in residuals. When the hypothesis of the filter matches the condition of the truth

model, residuals look white and zero-mean; when the hypothesis does not match, residuals display

5-3



Fitter FF action on fully functional aircraft

0 .1 -------- -. **- ..-, - .-.- -. -- .
-0.1 -......... I..........r-......... r..........r..........T...... ..

0 2 4 6 8 10 12
5x 1 0-3

0.5- .................... I......... r....................

-0.05 -------- - ------....

0 2 4 6 8 10 12

4x 10"6WS - -- -- -- -I... .. ..... .. ....--- ---...-- ---..-- -- --.
02 4 6 8 10 12

Figure 5.2 Longitudinal Residuals of Fully Functional Filter Acting on Fully Functional Aircraft.
Pitch Command Dither Has Amplitude ±-4 deg/sec and Frequency 6.6611 rad/sec.

dither oscillations because they are not compensated correctly by the filter. This is easily seen in

the the plot of the theta residual in Figure 5.3. The aircraft sensors give the outputs shown in

Figure 5.6 when the pitch angle sensor is failed at 4.00 seconds. Note that the aircraft continues

along its flight path with no change in trajectory despite this sensor failure. The dash-dot lines of

the bottom two plots represent the limits imposed on the elevator surface deflection.

Now consider the failure of the pitch rate sensor. This situation is different because the pitch

rate sensor provides feedback to the flight control system which is responding to a commanded

pitch rate (see Figure 3.1). Conversely, the pitch angle sensor is not incorporated into the FCS.

The residuals produced by the filter holding the fully functional hypothesis are shown in Figure 5.7

with the introduction of a pitch rate sensor failure at 4.00 seconds. Even though this is a sensor

failure, there is no jump discontinuity in the q residual. In fact, we see that the residuals of the

failed sensor on the fully functional filter get better than they were before the failure. Moreover,
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distinct changes occur in the pitch angle seasor residuals, theta, and the angle of attack sensor

residuals, alpha. Three questions come to mind: Why do the failed sensor residuals get better on

the filter with the wrong hypothesis? Why are other residuals affected? And, why does the MMAE

algorithm still make the correct failure identification, regardless?

The answer to the last question is found in a study of the failed pitch rate sensor filter's

residuals shown in Figure 5.8. Here, observations similar to those made of Figure 5.4 for the

correct filter responding to a non-feedback sensor failure are made. The residuals of q, the failed

pitch rate sensor, develop zero mean and small magnitude characteristics while the other residuals

seem to be affected to a much smaller degree.

So, the conclusion is that the MMAE is able to identify the failed pitch rate sensor correctly

because (a) residuals of sensors other than those of the failed sensor get large on the fully functional
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filter and (b) the characteristic sensor failure response of a zero mean and reduced magnitude

residual is evident on the faied sensor filter. Our original question of why does the pitch rate

sensor take more time to identify than all other longitudinal sensors can be answered with the

following explanation. Instead of watching for an increase in one residual on the fully functional

filter and a decrease in the respective residual on the failed sensor filter, the MMAE must overcome

the decrease in the failed sensor residual on the fully functional filter by waiting for other residuals

on that filter to get large. The correct filter, as before, only shows a decrease in the residual of

its hypothesized sensor failure. Its resulting change in probability is not large enough to compete

with the complex changte in the fully functional filter. So, it seems that the MMAE's identification

strategy is to wait for th. iEacorrect filters to diverge rather than make a quick identification of the
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correct filter. The length of time taken by the incorrect filters to diverge is dictated by the size of

the rTA;'r in each of the elemental filters.

To be sure, the hypothesis of a failed pitch angle sensor suggested by the residual theta in

Figure 5.7 is not believed by the MMAE because the residuals for the filter of this hypothesis get

large, as seen in Figure 5.10, just as those of the fully functional filter.

With the primary questions answered, a short explanation is given of why the other residuals

are affected and why they get so large on the fully functional filter. Since the FCS controls pitch

rate by adding a pitch rate feedback signal to pitch command to form an error signal, elevator

coordination with pitch command is lost if the sensor measurements loose all correlation with the

true aircraft pitch rate state. As an aside, this situation could be improved by running MMAE-

estimated pitch rate into the FCS instead of the output of the failed pitch rate sensor.

The correlation of elevator actuator commands to pitch rate before the sensor failure is il-

lustrated in Figure 5.10 by looking at q, Lt Elev, and Rt Elev at around the 2.00 second mark. A

sharp increase then decrease is seen in q and the resulting command to the elevators can be seen

to have a similar transition. After 4.00 seconds though, the Lt Elev and Rt Elev plots seem to

loose some frequency content that was present before. This is attributed to the loss of pitch rate

information in the development of elevator actuator commands. As a result, the commands applied

to the elevator actuators will not control pitch rate as desired. In this condition, the aircraft no

longer has the desired response of remaining on the original trajectory. The significant effects are

seen in Figure 5.10 as the drop off of velocity, u, the increase in pitch angle, theta, and the erratic
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behavior of angle of attack, mphm. The plot of q is the sensorn of pitch rate: the pitch

rate slafe is not shown in Figure 5.10. For comparison, the aircraft pitch rate state is shown alone

in Figure 5.11 to verify the intuitive conclusion that this state must develop a bias (since theta

ramps) and exhibit an uncontrolled behavior.

Now consider that residuals are the difference between actual measurement and filter-predicted

measurement. NI the sensors ae registering such huge displacements from the nominal, the fully

functional filter will indeed track them but the residual manitudes will be larg w compared to

filter tracking sensor me e s closer to the nominal. This is the effect seen in Figure 5.7,

which was discussed above.

In summary, our presumptions about residual monitoring for sensor failures must be modified

to account for the effect of failed sensors providing feedback to control the aircraft. The discontinuity

in the failed sensor residual will not be present in the fully functional filter, but it will be present

in the filter with the failed sensor hypothesis. Also, longer identification times can be expected for

such sensor failures due to the complex reactions of the fully functional filter.
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at 4.00 sec. Flight Control System Commands to Actuators are Shown in Bottom

Two Plots. Pitch Command Dither Has Amplitude ±4 deg/sec and Frequency 6.6611
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Figure 5.11 Aircraft Pitch Rate State Resulting from Flailed Pitch Rate Sensor Failure Occurring
at 4.00 sec. Pitch Command Dither Has Amplitude ±4 deg/sec and Frequency 6.6611
tad/sec.
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5.9 D~wihvwg at the Phuggo FPreqm" anpstd Low. Magnitude

The problems of short simulation duration caused the very low frequency trials to be all

but discarded when plotting the failure identification times vs acceleration for the various test

frequencies. Also, because of the large magnitude on the dither sinusoids, the elevator control

surfaces were commanded out of their limits. To perform a partial investigation of what was

missing, a very low magnitude dither at the phugoid frequency (w = 0.2484) was used for a set of

test runs. Dither signals applied to the command input are represented by Equation (5.1):

Right pitch rate command = 0.3 x sin(0.2484t + , deg/sec

Left pitch rate command = 0.3 x sin(0.2484t + •.a) deg/sec

Right roll rate command = 1.0 x sin(0.2484t + •.,) deg/sec(

Left roll rate command = 1.0 x sin(0.2484t + , deg! sec

Right sideslip angle command = 1.0 x sin(C.2484t + ,) deg

Left sideslip angle command = 1.0 x sin(0.2484t + ,1) deg

The resulting failure identification times are significant reductions from those of our optimal dither

in Figure 4.15. See Figure 5.12. The pitch rate magnitude of 0.3 deg/sec causes the elevators to

move through 63% of their +15° range with the left elevator nearly breaking the upper limit and

the right elevator nearly breaking the lower limit. The ailerons and rudders utilize less than 20%

of their ranges when commanded with the dither signals given in Equation (5.1). Note, however,

from Table 5.1 that the g-limits have not been broken, as is the case with the Trials of Section 4.2

in which low frequencies cause severe g-limit violations.

Table 5.1 Lateral and Vertical Acceleration Statistics Resulting from One Complete Cycle of
Phugoid Frequency Dither.

Component A, [G's] A. [G's]
Maximum Occurrence 0.6706 0.2306

+2a, 0.1359 0.0597
+1a 0.0797 0.0298

mean 0.0234 -0.0002
-1a -0.0329 -0.0301
-2u -0.0892 -0.0600

Minimum Occurrence -0.7328 -0.2331
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Figure 5.12 MMAE Filter Probability Histories when Dithering at Phugoid Frequency.
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Figure 5.13 shows the flight control system command inputs and the g-loading resulting

from those inputs. The ordinate labels are defined as follows: Ecmd Rt - right channel pitch rate

command; Ecmd Ut - left channel pitch rate command; avg Az - average vertical acceleration from

10 Monte Carlo runs; Acmd Rt - right channel roll rate command; Acmd Ut - left channel roll rate

command; Rcmd Rt - right channel sideslip angle command; Rcmd Lt - left channel sideslip angle

command; and avg Ay - average horizontal acceleration from 10 Monte Carlo runs.

For the fully functional aircraft, there were no false alarms in ten Monte Carlo runs of 12

seconds duration each. There were false alarms when testing the MMAE against right and left

elevators. On Run 4 with the induction of a right elevator actuator failure at 4.00 seconds, the

correct filter was identified at 4.22 seconds. 5.60 seconds later, the left elevator was identified but

probability subsequently returned to the correct filter. Similarly, three runs with a left elevator

actuator failure induced, produced false alarms for angle of attack sensor and right elevator actuator

failures. There is no consistent pattern and, of 140 separate runs, there were only these four false

alarms. This neglects the aircraft instability and false alarms caused by a failed yaw rate sensor as

seen in the probability plot of filter S8 in Figure 5.12.

The false alarm of the left elevator on Run 4 was investigated in-depth. No explanation could

be found for this false alarm. The filter residuals for the correct filter were zero-mean Gaussian, as

expected, and the residuals for the falsely declared filter were well outside their ±2a bounds. The

only deviation from a normal run is that the remaining operational elevator is commanded to deflect

8* outside of its travel limits of ±150. The limit is broken at 7.26 seconds and rises smoothly to a

maximum of 128% of the elevator deflection range. The limit is broken well after the first correct

failure is declared but before the false second failure is declared. The phase relationship between

the two elevator control surfaces is lost when one surface fails. This gives the remaining surface

complete authority over the controlled aircraft state, pitch rate. Why the remaining elevator is

commanded to deflect even more than when it was competing with opposing commands to the

other elevator is a mystery. Our investigations reveal no explanations. However, this event does

add credibility to the idea that a different dithers should be employed when the aircraft already

has one failed component. Dithers for the fully functional aircraft were designed with all control

surfaces and sensors intact. It therefore follows to reason that dithers for partially disabled aircraft

should be designed according to the available flight control components.
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Referring to Figure 5.13, we can see the unusual effect of dithering at the phugoid firquency.

The vertical g-load has the high frequency content associated with wind gusting but it also has

the low frequency component of the phugoid. The range of vertical acceleration samples does not

exceed the limit of 0.1 g. It is important to note that a full cycle of command input is complete

at the end of the simulation, which runs for 25.30 seconds Other simulations in this thesis stop at

12.02 seconds. Even though the statistics only represent one cycle, they are more representative of

the true effect than statistics from a partial cycle.

With the exception of the lateral control surface actuator failures and the angle of attack

sensor failure, better MMAE performance was obtained with the shorter frequency dithers of

Equation (4.6). Therefore, in light of the false alarms and small improvement in some failure

identification times, we are more inclined to view the optimal dither of Figure 4.15 as the best

dither possible within the scope of our work.

5.4 Chapter Summary

There were observations made in Chapter IV which have merited further study to provide

credible substance to the explanations given concerning the primary research objectives. The first is

unusual MMAE performance resulting from a failed yaw rate sensor. A separate analysis concludes

that no problem exists with the MMAE algorithm in this particular situation, but that a failed

yaw rate sensor causes the aircraft to go unstable in the lateral channel. This explanation must be

kept in mind wherever yaw rate sensor failures are induced.

Sensors providing a feedback signal to the flight control system seemed to take longer to

identify than sensors that do not provide feedback. One might suppose that, since the failure of

these sensors has an effect on all aircraft states, they might have quicker failure identification times.

The converse is true, and the detailed analysis in this chapter revealed that the residual of the failed

sensor in the fully functional filter actually has a decrease in variance once a failure is induced.

The MMAE must wait for all of the other residuals to deviate from zero-mean before it is able to

declare the correct failure.

Finally, the problem of elevator control surfaces breaking their travel limits when dithered

at low frequencies is corrected. The phugoid frequency is chosen as the dither frequency and the
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dither magnitudes are adjusted so that the travel limits are not broken. With this correction,

MMAE performance is re-evaluated against low frequency dithers. Some improvement was gained

in failure identification times, although an exceptionally long time was taken to identify a failed

sideslip angle sensor, which is not surprising since this sensor has a great deal of additive noise in

its output.
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VI. Coribclionu and Recommenduaiom

Our investigation of the MMAE algorithm has revealed several interesting characteristics

about the nature of MMAE and its application to a dynamic system with rather significant random

inputs. This chapter will review the findings of the research with respect to the initial objectives,

summarize the conclusions drawn from the Kalman filter tuning experience, and present a suggested

course of action to implement MMAE on-board the real LAMBDA. Finally, topics for further

research are presented.

6.1 Summary of Findings

A review of the research objectives established in Section 1.5 is now presented along with a

review of the actual findings.

What is the form of the dither input that causes the quickest convergence of the MMAE

algorithm to a correct failure hypothesi?

It appears that the sinusoidal signal possesses the best characteristics for dithering a system

to enhance MMAE failure identification. The first reason is that the sinusoid has a constantly

changing first derivative. This has advantages above the square wave and triangle wave in that

the system is constantly being excited rather than just relying on the transients of the system for

excitation. Secondly, the excitation may be confined to a single frequency rather than a band. A

square wave produces system excitation that has the frequency components of the period between

pulses, the duration of the pulse, and the natural frequency of the system, as well as high frequency

content due to the sharp change. With the sinusoid, we have shown that failure identification times

may be correlated with the frequency of dither. Thus, there is no need to add in several different

frequencies to enhance MMAE failure identification. However, if a combination of frequencies is

found to be useful in failure identification, some linear combination of sinusoids could be designed

so that all frequency components could be controlled.

What magnitude of lateral and vertical g-forces would be considered to be "subliminal" to the

aircrew?

Our research in determining the limits of "subliminal" g-loading was restricted to the findings

in published literature and personal interviews with authorities on human factors engineering. The
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limit of 0.10 #'s in the vertical direction and 0.20 g's in the horizontal direction was based mainly

on Menke's statement [15] and supported by various other sources mentioned in Subsection 3.4.2.

What is the best balance between abliminality and failure idem tcaton time?

The plots of acceleration versus MMAE failure identification time in Section 4.2 generally

have a breaking point where the accelerations become very large for very little improvement in

failure identification time. We note that the issues to balance are really failure identification

time and aircraft state excitation rather than applied g-forces. Accelerations in the vertical and

horizontal directions are derived from state excitation. Also, failure identification times for control

surfaces depend on control surface deflections which, with the QFT flight control system, is a

function of offset between right and left control input channels. As discussed in Subsection 4.2.1,

the relationship between applied g-forces and failure identification time is different from failed

component to failed component. Therefore, a compromise must be made in defining the optimal

dither for all component failure identifications.

What format of dither input will provide the best overall performance in terms of failure

protection, aircrew convenience, and comfort?

In terms of best overall MMAE performance, the optimal dither of Equation (4.6) provides

the best protection for all failed component identifications if only constant magnitude, frequency,

and phase are used. In terms of aircrew comfort, this optimal dither also limits aircraft g-loads

to less than the established limits for this thesis. However, considering that the LAMBDA is

an unmanned, remotely piloted vehicle, the limit of g-forces simply demonstrates that they can

be limited, as is desired for manned aircraft, while providing good MMAE failure identification

performance. The question of convenience was not addressed for the lack of immediate resources

and lack of concern with respect to the unmanned LAMBDA.

Does the MMAE hierarchical-structured failure detection algorithm converge to the correct

dul failure hypothesis?

The hierarchical structure performs well when the aircraft system is controlled with our

optimal dither of Equation (4.6). Although there were a few false alarms, there was no pattern of

consistent false alarms or missed alarms.
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Does t•e alyonthm converge to tie cor• et did finke Ahothesis quich exsou to prevent

fincorrt failre k~potheses declarations or .everelp degraded contro of &he aircraft!

A fortunate example available to illustrate that a failure can be identified befoem the aircraft

goes out of control is that of the yaw rate sensor failure. The problems of aircraft stability associated

with this failure are discussed in Section 5.1. It is proven that a yaw rate sensor failure can be

identified by the MMAE within one second and the aircraft will remain stable for up to 4 seconds

after the failure. This allows 3 seconds for flight control system re-configuration which, in this

case, may simply be to null the flight control systems' commands to the rudder control surfaces.

We have also proven that two failures spaced in time by 1 second are identified correctly with the

MMAE hierarchical structure.

Is the algorithm's performance path-depeident for the identification of simultaneou dual fail-

ure,?

Simultaneous dual failures were not tested. However, it is noted that the order of failures

does impact the time to identify them.

The difficulties encountered while tuning the elemental Kalman filters led to the development

of a computer algorithm to accomplish this task. The objective is to allow for unknown wind

perturbations of state variables while keeping elemental Kalman filters tightly tuned. This was

accomplished by tuning against a portion of the simulated wind conditions against which the

MMAE-augmented LAMBDA model is flown. The strategy is to reduce the entire Q matrix

incrementally so that MMAE probability of fully functional filter does not drop below 2% of its

maximum value during 60 seconds of simulation.

A peculiarity of using MMAE on a system augmented with a control system was found. The

left and right flight control systems, when subjected to out-of-phase dithers, attempt to compensate

for the unrealized change in a single controlled aircraft state by increasing the deflection of their re-

spective control surface. Even though the flight control system input magnitudes are kept the same,

there was a big difference between the amount of control surface deflection that was commanded

for different frequencies. So, the effect is that as dither frequency varied, so did the magnitude of

aircraft state excitation which, we know, also plays a predictable roll in failure identification time.
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An optimal dither routine was deduced by testing the time to identify all types of single failures

against different frequencies and magnitudes of input dither. The first task was to alter frequency

while input dither magnitude remained constant. Actuator failures are best identified with higher

bequency dithers at about the 3 rad/sec. Sensor failures have a dither frequency relationship

with failure identification time that can be predicted by looking at the Bode plot response of the

corresponding aircraft state to the dithering control surface. That is, for dither frequencies in

the high-gain region of the Log-magnitude plot, one can expect quick failure identification times.

However, if a sensor is included in the feedback loop of the flight control system, the time to identify

the failure of that sensor does not correlate with the Log-magnitude Bode plot. A study of this

phenomenon was accomplished and the findings are that the scalar residual behavior exhibited by a

non-feedback sensor is not characteristic of that of a feedback sensor. Rather, as with control surface

failures, more than one residual of the fully functional filter will begin to deviate. In addition, the

scalar residual of the failed sensor may have a reduced variation in the fully functional filter. The

impact is that scalar residual monitoring must be accomplished in the filter which hypothesises the

failure of the sensor.

An optimal dither format was developed based on a balance of best frequency and magnitude

of dither for each type of failure in each channel. Rudder and aileron dithers were synchronized in

frequency to simplify analysis, but there is the possibility that using separate dither characteristics

for these control surfaces will yield better failure identification by taking advantage of the sideslip

angle and yaw rate response to low frequency.

A sample of the LAMBDA's pilot control stick inputs was obtained and applied to the inputs

of our truth model. The intent was to see what MMAE performance would be if no automatic

dither is applied and the only flight control system inputs are those of the pilot in his/her effort to

maintain a straight and level flight path. In this study, there was no phase difference between left

and right channel control inputs. Under that condition , the MMAE was unable to distinguish a left

actuator from a right actuator failure effectively. However, sensor failures were identified quickly.

Of note is that the pilot's commands resulted in g-loading outside of our established limits.
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&.2 Suefi•ho If . an Effective MMAB on LAMBDA

The optimal dither routine has been established for the fight conditions simulated in the

software designed with the uncertainty characteristics specified by the Dryden Wind Gust Model.

MMAE performance varied greatly according to how this model was represented by zero-order

approximations in the elemental Kalman filter models. No work in this thesis makes any attempt to

verify that this model represents the conditions encountered by the LAMBDA in actual test flights.

Therefore, it is important to acquire actual flight data and use the tuning algorithm described in

Section 4.1 to develop the steady state Kalman filter gains required for good MAAE performance

in actual wind conditions. At least, the tuning derived in our research should be verified against

such data.

The controllability of the LAMBDA must be verified from an operator's perspective while

undergoing automatic dithers. This could be done by using the computerised LAMBDA flight

simulator found at Wright Laboratory Flight Controls Division, Flight Controls Techniques Branch.

It must be established that the video display is not too jittery for the pilot to track a desired course

comfortably and effectively. Our studies verified that the g-loading on a hypothetical pilot on-board

the LAMBDA is not uncomfortable. This was done to extend the application and effectiveness of

an MMAE dither to manned aircraft with the assumption that the same dither would not cause

the ground-based LAMBDA pilot problems in controlling the unmanned aircraft.

Finally, the type of actuator failures simulated in this thesis are realized by floating or missing

control surfaces. That is, the zeroing out of a column in the B matrix means that no aerodynamic

forces are applied by the control surface. If failed actuators are realized by control surfaces fited

in the neutral (or worse, non-neutral) position rather than failing to free-stream, unmodeled forces

would be applied and poor actuator failure identification would result.

6.3 Recommended Topics for FJrther Research

Since the MMAE identification time for each component subject to failure depends on the fre-

quency and magnitude of dither, it would be advantageous to alter the dither parameters according

to the type failure suspected. For instance, if the longitudinal channel has lost the use of one eleva-

tor, it would be meaningless to continue to dither the aircraft as a frequency and magnitude that
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is suited to enhance MMAE identification of a failed elevator actuator. Rather, a dither designed

strictly for sensor failure ide i icon should begin. Prthermore, appropriate dithers for partially

disabled aircraft should be designed while keeping in mind which flight control components are

available.

An aspect of subliminality is the lack of annoyance to the pilot. Because the human body is

able to perceive very small angular acceleration and linear acceleration, it may be futile to develop

an effective dither signal that is imperceptible. On the other hand, we can design a dither signal that

may not be an annoyance to the pilot. Considering the nature of wind, with its unpredictability,

an effective dither signal might be designed to have the feed of atmospheric turbulence of a level

just above that through which the aircraft is currently flying. This would provide the aircraft state

excitation required for effective MMAE failure identification, and it would not subject the pilot to

unfamiliar or nauseating dynamics.

Dithers having the form of swept sine waves or band-limited noise dithers may provide the

aircraft state excitation required for MMAE failure identification and be unpredictable enough

to avoid pilot annoyance. As shown in our research, there are several frequencies in each axis

that facilitate good MMAE performance. A dither signal that sweeps across these frequencies will

cover the best frequency for each component at time intervals, instead of just dithering at some

compromise frequency as we have done. A random frequency sweep may make the dither signal

indistinguishable from wind disturbance. Another suggestion is to form a linear combination of

sinusoids. The sensitive frequencies for several types of failure identifications could be superimposed

on one dither signal to form a linear combination, so that the best dither for all components is

applied continuously.

While testing failure identification times as dither frequency and magnitude are varied, a

course discretization of frequency/magnitude points was used to form the test parameter space.

Finer discretization may dear up problems of identifying trends in identification times related to

the roll rate sensor failure and yaw rate sensor failure. Another solution to creating more consistent

trends would be to force the failure being tested to occur at exactly the same phase angle of each

different frequency of dither. This would ensure that the MMAE attempts to identify failures at

similar dynamic changes for all frequencies.
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Another proposal for altering our experimental procedure to provide more consistent results

is to set the dither phase offset to zero, then test for sensor failure responses. The strategy is to

note the degree of aircraft state excitation required for good sensor failure identification. This will

establish the amount of aircraft state excitation that should remain constant from dither frequency

to dither frequency. In the experiments of this thesis, input dither magnitude was kept constant

over all frequencies while aircraft state excitation magnitude was allowed to vary greatly. The effect

of dither frequency changes could be isolated further by altering input dither magnitude to keep

aircraft state excitation magnitude constant over various dither frequencies.

More study should by undertaken to establish the best phase relationship between left and

right control channels. This could be accomplished by offsetting opposite control surface dithers by

1800 and performing only actuator failures as dither magnitude is increase from zero. A minimum

degree of control surface deflection for good actuator failure identification should be established

by experimentation. The 1800 phase between channels should promote maximum efficiency in

identifying left from right actuator failures. Since left and right channels will attempt to cancel each

other out, the effect on aircraft state excitation should be minimal with all actuators operational.

The next step is to shift the phase from 180%, thereby increasing aircraft state excitation to the

point established by experiment as described in the previous paragraph. The result should be

a dither magnitude and phase that provide a balanced system input for the best MMAE failure

identification for both actuators and sensors.

An important suggestion is to dither all surfaces at the same frequency for each test. This

assures that no other frequencies are introduced from one channel through the cross coupling terms

of the other channel. All surfaces must be dithered in each test, however. Zero excitation in one

channel will lead to an unreliable MMAE response for that channel, which will detract from MMAE

probabilities being formed in the channel that is being dithered.

It was demonstrated in Section 5.1 that the MMAE is able to identify the failure of a critical

flight control system component, the yaw rate sensor. Loss of its feedback signal to the washout

filter caused the aircraft to go unstable. The MMAE readily provides good estimates of the yaw

rate sensor signal despite the sensor's failure. It follows that these estimates may replace the yaw

rate sensor signal in the event of such a failure and thus provide stable control of the aircraft.
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Similarly, the pitch rate sensor measurement could be replaced by an MMAE estimate of the pitch

rate state in case of a pitch rate sensor failure. Although the aircraft is not unstable with this

failure, improved flight control system performance can be realized. An investigation into MMAE

state estimate replacement of sensor signals is recommended.

Finally, knowing the behavior of scalar residuals with respect to their correspondence to

feedback or non-feedback sensors allows one to devise a strategy for effective residual monitoring.

This is especially important when dealing with sensors that provide feedback to the QFT flight

control system, since their failures have a tendency to take longer to identify than those of non-

feedback sensors.

6.4 Report SummarY

The research in this thesis seeks to identify the best dither routine for enhancing MMAE

failure identification and to investigate the performance of a hierarchical structure in the MMAE

identification of dual failures. The theory behind MMAE is presented in Chapter I along with the

research objectives. A review of previous MMAE research was undertaken to establish what is

known and what is as yet unknown about MMAE, so that the present work will serve to build on

that knowledge. The methods for achieving the research objectives were presented in Chapter ITI,

along with justification for the structure of models used in computer simulations. In Chapter IV,

the results of testing are presented and analyzed with respect to the research objectives. Support

for secondary conclusions not related to the primary research objectives is provided in Chapter V.

A summation of conclusions is found in the present chapter. Supporting appendices give complete

insight to all results and conclusions reported.
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Appendix A. Dimensional Stability Deri•eives

The primed dimensional stability derivatives used in the LAMBDA truth model for this thesis

are the result of an analysis of data from LAMBDA flights conducted by WL/FIGS [26]. Table 1.1

gives the nominal flight conditions corresponding to the the values in Tables A.1 and A.2. They are

to be used in Equation (3.1) which describes the LAMBDA's aerodynamic characteristics in state

space format. Also, the wind states to aircraft states transformation matrix of Equation (3.24)

makes use of these same stability derivatives.

Table A.1 LAMBDA longitudinal primed dimensional stability derivatives.

Symb. Value Definition
X.' -0.413963 x 10-1 Change in longitudinal force due to change in velocity
X 4.51655 Change in longitudinal force due to change in angle of attack
X2 2.76989 Change in longitudinal force due to change in pitch rate
X6 -32.1700 Change in longitudinal force due to change in pitch angle
X8.1 -0.300342 Change in longitudinal force due to change in left elevator angle
XS. -0.300342 Change in longitudinal force due to change in right elevator angle
Xf., 0.970785 x 10-1 Change in longitudinal force due to change in left aileron angle
Xs'., 0.970785 x 10-1 Change in longitudinal force due to change in right aileron angle
Z.' -0.265210 x 10-2 Change in vertical force due to change in velocity
Z" -4.01458 Change in vertical force due to change in angle of attack
Ze 0.977740 Change in vertical force due to change in pitch rate
ze 0 Change in vertical force due to change in pitch angle
Z6.1 -0.150277 Change in vertical force due to change in left elevator angle
Z-., -0.150277 Change in vertical force due to change in right elevator angle
Z4.1 -0.304528 Change in vertical force due to change in left aileron angle
Z'.. -0.304528 Change in vertical force due to change in right aileron angle
M.' -0.228065 x 10-1 Change in pitching moment due to change in velocity
M" -45.4757 Change in pitching moment due to change in angle of attack
M• -3.38135 Change in pitching moment due to change in pitch rate
Me 0 Change in pitching moment due to change in pitch angle
M•.1  -23.2027 Change in pitching moment due to change in left elevator angle
MSL -23.2027 Change in pitching moment due to change in right elevator angle
M4., -3.91485 Change in pitching moment due to change in left aileron angle
IML 1 -3.91485 Change in pitching moment due to change in right aileron angle
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Table A.2 LAMBDA lateral primed dimensional stability derivatives.

Symb. Value Definition

YO -0.185589 Change in lateral force due to change in sideslip angle
YP' -0.167993 x 10-1 Change in lateral force due to change in roll rate
Y# 0.190265 Change in lateral force due to change in roll angle
YI, -0.99528:.ý Change in lateral force due to change in yaw rate
Y'1 ., 0 Change in lateral force due to change in left elevator angle
Y1

1., 0 Change in lateral force due to change in right elevator angle
Ye' 0 Change in lateral force due to change in left aileron angle
YA',' 0 Change in lateral force due to change in right aileron angle

Y'. 1 0.138001 Change in lateral force due to change in rudder angle
LI -8.84221 Change in rolling moment due to change in sideslip angle
LI -11.1274 Change in rolling moment due to change in roll rate
L' 2.00065 Change in rolling moment due to change in yaw rate
L'. 1  3.01717 Change in rolling moment due to change in left elevator angle
L' -3.01717 Change in rolling moment due to change in right elevator angle

,66.3312 Change in rolling moment due to change in left aileron angle
L'-, 66.3312 Change in rolling moment due to change in right aileron angle
I', -0.662067 Change in rolling moment due to change in rudder angle
N# 12.8746 Change in yawing moment due to change in sideslip angle
NP -0.226784 Change in yawing moment due to change in roll rate
N, -0.864736 Change in yawing moment due to change in yaw rate
Nj.1  -0.280877 x 10-1 Change in yawing moment due to change in left elevator angle
Nj'., 0.280877 x 10-1 Change in yawing moment. due to change in right elevator angle
N•. 1-2.15844 Change in yawing moment due to change in left aileron angle
Nj', 2.15844 Change in yawing moment due to change in right aileron angle
No, -21.9503 Change in yawing moment due to change in rudder angle
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Appendiz B. Bode Plots of Actuator Transfer Functions

The natural amplitude ratio response of the eight aircraft states to control surface inputs is

presented in this appendix in the form of logarithmic magnitude Bode plots. This data is used in

the analysis of Section 4.2.1 as a means of correlating MMAE failure identification times to the

natural response of aircraft states to dither inputs.

Each caption indicates the input and output of the transfer function used in generating

the indicated plot. A constant log-magnitude line derived by subtracting 20 dB from the peak

magnitude is drawn in each plot. The crossing of this line with the log-magnitude response indicates

the bandwidth of the response. Bandwidth could be derived using other methods, but this one seems

to generate more consistent results as each state is excited by different control surfaces.

The frequency of the peak log-magnitude is indicated in the caption by w,, given in radians per

second, as is the bandwidth, wBw. When required, an upper bandwidth frequency is be indicated

by wEw.,,., and a lower bandwidth frequency by W5w, ..

so

-J

j-0
-40 ..............

102 10 100 101
Frequency frad/aecJ

Figure B.1 Log Magnitude Response of forward velocity to Left Elevator. Peak Magnitude Minus
20 dB is 56.72 dB. wp, = 0.25 and WBw = 0.36 rad/sec.
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Figure B .2 Log Magnitude Response of Angle of attack to Left Elevator. Peak Magnitude Minus
20 dB is -16.78 dB. wp& 0.24 and 4 0 DW 13.55 nad/sec.
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100
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Figure B.3 Log Magnitude Response of Pitch Rate to Left Elevator. Peak Magnitude Minus 20
dIB is 2.62 dB. 0 4k = 0.25, WBW,... = 0.17 and WBW.,,., = 18.91 rad/sec.
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Figure BA4 Log Magnitude Response of Pitch Angle to Left Elevator. Peak Magnitude Minus 20
dB is 14.66 dB. wa,, 0.25, wDgWI...= 0.14 and wBw.. 0.42 rad/sec.

10010 10p 10,
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Figure B.5 Log Magnitude Response of Sideslip Angle to Left Aileron. Peak Magnitude Minus
20 dB is -11.40 dB. wp5 = 0.01 and wow = 5.20 rad/sec.
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Figure B.6 Log Magnitude Response of Roil Rate to Left Aileron. Peak Magnitude Minus 20 dB
is -4.68 dB. wy 4.20 and wow 113.20 rad/sec.
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Figure B.7 Log Magnitude Response of Roll Angle to Left Aileron. Peak Magnitude Minus 20
dB is 27.00 dB. wpt =O001and wow =O025 rad/sec.
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Figure B.8 Log Magnitude Response of SYdaw Range to Left Ruddern. Peak Magnitude Minus20d
i120.d3 is-1.88y 0.0 and 380 ad0.2=7.6 rad/sec.
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Figure B.10 Log Magnitude Response of Roil Ratge to Left Rudder. Peak Magnitude Minns 20
dB is -1.873dB. wp,1  3.0, ndwl,w=,0.01adwr,,, .0rad/sec.
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Figure B.12 Log Magnitude Response of Yaw Rate to Left Rudder. Peak Magnitude Minus 20
dB is 0.14 dB. %a~ = 3.70 and acms-over frequencies are at 6 Ww = 0.11, 1.23, and
11.87 rad/sec.
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Appendi C. Difference Equations for QFT Preilter. and Compensators

Listed in this appendix are the difference equations for the prefilters, compensators, and

washout filters for the Quantitative Feedback Theory flight control system designed by Capt Ras-

mussen [261. The sample time of this design is T. = 20 msec. Refer to Figure 3.1 for a high-level

block diagram of this flight control system.

Prefilter F-11 has the input Pitch Rate Command, PITCHCMD, and the output FlIC which

is summed with the Pitch Rate Measurement, PITCHARATE, to form the Pitch Rate Error, QERR.

F11A(k) = 8.9573 x 10-I x FIA(k - 1) + 1.000 x PITCHCMD(k) -

9.1388 x 10-1 x PITCHCMD(k - 1) (C.la)

FIIB(k) = 8.1818 x 10-1 x F11B(k - 1) + 1.000 x F11A(k) +

1.0000 x F11A(k - 1) (C.lb)

FllC(k) = 8.3486 x 10-1 x F11C(k - 1) + 9.0874 x 10-3 x FllB(k) +

9.0874 x 10-3 x F11B(k - 1) (C.lc)

Summing block:

QERR(k) = F11C(k) - PITCHRATE(k) (C.2)

Compensator G-11 has the input Pitch Rate Error, QERR, and the output GIlD which is

range limited to produce the Elevator Command, ELEVATOR-CMD.

G11A(k) = 1.1111 x 101 x GllA(k - 1) + 1.0000 x QERR(k) -

8.0180 x 10-' x QERR(k - 1) (C.3a)

G11B(k) = 9.6078 x 10-1 x G11B(k - 1) + 1.0000 x GIIA(k) -

8.4332 x 10-1 x G11A(k - 1) (C.3b)

GlC(k) = 6.1538 x 10-1 x G11C(k - 1) - 3.0769 x 10-1 x G11C(k - 2) +

1.0000 x G11B(k) - 1.8462 x G11B(k - 1) +

8.5741 x 10' x G11B(k - 2) (C.3c)

G1lD(k) = 1.0000 x G11D(k - 1) + 3.7457 x G11C(k) +

C-1



3.7T7 x G1nC(h - 1) (C.3d)

Limit GlID(k) (and counsequently GlD(h - 1)) to 15".

ELBVATOR.CMD(,) = G11D(h) (C.4)

Prefilter F.22 has the input Roll Rate Command, ROLLCMD, and the output F22A which

is summed with the Roll Rate Measurement, ROLL-RATE, to form the Pitch Rate Error, PERL

F22A(k) = 1.0000 x ROLLCMD(k) (C.5)

Summing block:

PERR(k) = F22A(k) - ROLL_-ATE(,) (C.6)

Compensator G-22 has the input Roll Rate Error, PER., and the output G22C which is

range limited to produce the Aileron Command, AMLERON.CCMD.

G22A(k) = 1.0884 x G22A(k - 1) - 3.9225 x 10'1 x G22A(k - 2) +

1.0000 x PERR(k) - 1.6083 x PERR(k - 1) +

6.4242 x 10-1 x PERR(k - 2) (C.7a)

G22B(k) = 9.9860 x 101 x G22B(k - 1) + 1.0000 x G22A(k) -

9.990 x 10-1 x G22A(k - 1) (C.7b)

G22C(k) = 9.9860 x 10-1 x G22C(k - 1) + 5.3345 x 10-2 x G22B(k) +

5.3345 x 10-2 x G22B(k - 1) (C.7c)

Limit G22C(k) (and consequently G22C(k - 1)) to ±15".

AILERONCCMD(,) = G22C(k) (C.8)

Prefilter F-33 has the input Sideslip Angle Command, BETACMD, and the output F33B

which is summed with the Sideslip Angle Measurement, BETA, to form the Sideslip Angle Error,
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BBRR.

F33A(k) = 9.4175 x 10-1 x F33A(h - 1) + 1.0000 x BETA-CMD(k) -

7.3913 x 10-1 x BETACMD(k - 1) (C.9a)

F33B(k) = 9.6078 x 10-1 x F33B(k - 1) + 1.5471 x 10-1 x F33A(k) -

1.3719 x 10-' x F33A(k - 1) (C.9b)

Summing block:

BERR(k) = F33B(k) - BETA(k) (C.10)

Compensator G-33 has the input Sideslip Angle Error, BEIR, and the output G33B.

G33A(k) = 6.6667 x 10-1 x G33A(k - 1) + 1.0000 x BERR(k) +

10.0000 x 10-1 x BEIR(k - 1) (C.Ula)

G33B(k) = 6.6667 x 10-1 x G33B(k - 1) - 3.8194 x 10-2 x G33A(k) -

3.8194 x 10-1 x G33A(k - 1) (C.11b)

The Washout Filter has the input Yaw Rate Measurement, YAW-_RATE, and the output Yaw

Damper Feedback, YD, which is summed with the output of compensator G-33, G33B, and range

limited to produce the Rudder Command, RUDDERCMD.

YD(k) = 9.8020 x 10-1 x YD(k - 1) + 3.9604 x 10-1 x YAWRATE(k) -

3.9604 x 10-1 x YAWRATE(k - 1) (C.12)

Summing block:

RUDDERLCMD(k) = G33B(k) - YD(k) (C.13)
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Appeodiz D. Failure ID Time vs g-forcea as Dither Magnitude Changes

The figures and tables of this appendix are the results of studies similar to those of Section 4.2

except that magnitude instead of frequency is being changed from trial to trial. Trial numbers have

varying decimal digits to indicate changes in dither maguitze. Identical digits in the units position

of the trial numbers indicate simulations with identical dither fveq•e•cies.

A complete analysis of the following data is accomplished in Subsection 4.2.1. In particular,

the tradeoff between adjusting dither magnitude or dither frequency is considered. Information

contained in Tables D.1 through D.6 is condensed in Table 4.15 found on page 4-38. Likewise,

information contained in Tables D.7 through D.14 is condensed in Table 4.16 on page 4-41.
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Table D.1 Results of varying dither magnitude to alter Right Elevator Actuator failure identifi-

cation time and vertical g-forces.
Trial 4 4.1 4.2

Failure ED time [sec] 0.24 0.29 0.33
Elevator Dither

Magnitude [deg/sec] 6.00 5.00 4.00
Frequency [rad/sec] 1.6653 1.6653 1.6653

Vertical Acceleration [g's)
maximum occurrence 0.2510 0.2778 0.2726

+2" 0.1053 0.0839 0.0722
+1oa 0.0412 0.0403 0.0347

mean -0.0230 -0.0032 -0.0028
-1. -0.0871 -0.0468 -0.0402
-2u -0.1512 -0.0904 -0.0777

minimum occurrence -0.3444 -0.2828 -0.2712
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Right Elevator Actuator Failure
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Figure D.1 g-forces vs ID time for Right Elevator Actuator failure as magnitude changes.
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Table D.2 Results of varying dither magnitude to alter Left Elevator Actuator failure identifica-
tion time and vertical g-forces.

Trial 4 4.1 4.2
Failure ID time [secd 0.23 0.25 0.29

Elevator Dither
Magnitude [deg/sec] 6.00 5.00 4.00
Frequency [rad/sec] 1.6653 1.6653 1.6653

Vertical Acceleration gjs]
maximum occurrence 0.2510 0.2778 0.2726

+2or 0.1053 0.0839 0.0729
+1. 0.0412 0.0403 0.0347

mean -0.0230 -0.0032 -0.0028
-1w -0.0871 -0.0468 -0.0402
-2c -0.1512 -0.0904 -0.0777

minimum occurrence -0.3444 -0.2828 -0.2712
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Left Elevator Actuator Failure
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Figure D.2 g-forces vs UD time for Left E.,vator Actuator failure as magnitude changes.
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Table D.3 Results of varying dither magnitude to alter Forward Velocity Sensor failure identifi-

cation time and vertical g-forces.
Trial 4 4.1 4.2

Failure ED time [sec] 0.58 0.83 0.93

Elevator Dither
Magnitude [deg/sec] 6.00 5.00 4.00
Frequency [rad/sec] 1.6653 1.6653 1.6653

Vertical Acceleration [u's)
maximum occurrence 0.2510 0.2778 0.2726

+2a 0.1053 0.0839 0.0722
+1. 0.0412 0.0403 0.0347

mean -0.0230 -0.0032 -0.0028
-1o -0.0871 -0.0468 -0.0402
-2a, -0.1512 -0.0904 -0.0777

minimum occurrence -0.3444 -0.2828 -0.2712
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Forward Velocity Sensor Failure
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Figure D.3 g-forces vs ID time for Forward Velocity Sensor failure as magnitude changes.
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Table D.4 Results of varying dither magnitude to alter Angle of Attack Sensor failure identifica-
tion time and vertical g-forces.

Trial 4 4.1 4.2
Failure ED time [sec] 0.10 1.34 2.26

Elevator Dither
Magnitude [deg/sec] 6.00 5.00 4.00
Frequency [rad/secl 1.6653 1.6653 1.6653

Vertical Acceleration [9's]
maximum occurrence 0.2510 0.2778 0.2726

+2.r 0.1053 0.0839 0.0722
+1ir 0.0412 0.0403 0.0347

mean -0.0230 -0.0032 -0.0028
-lr -0.0871 -0.0468 -0.0402
-2a. -0.1512 -0.0904 -0.0777

minimum occurrence -0.3444 -0.2828 -0.2712
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Angle of Attack Sensor Failure
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Figure D.4 g-forces v8 ID time for Angle of Attack Sensor failure as magnitude changes.
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Table D.5 Results of varying dither magnitude to alter Pitch Rate Sensor failure identification

time and vertical g-forces.
Trial 4 4.1 4.2

Failure ID time [aec] 0.33 0.42 0.47
Elevator Dither

Magnitude [deg/sec] 6.00 5.00 4.00

Frequency [rad/sec] 1.6653 1.6653 1.6653
Vertical Acceleration g's]

maximum occurrence 0.2510 0.2778 0.2726
+2a 0.1053 0.0839 0.0722
+1. 0.0412 0.0403 0.0347

mean -0.0230 -0.0032 -Q C328
-1. -0.0871 -0.0468 -0.0402
-2ar -0.1512 -0.0904 -0.0777

minimum occurrence -0.3444 -0.2828 -0.2712
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Pitch Rate Sensor Failure
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Figure D.5 g-forces vs ED time for Pitch Rate Sensor failure as magnitude changes.
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Table D.6 Results of varying dither magnitude to alter Pitch Angle Sensor failure identification
time and vertical #-forces.

Trial 4 4.1 4.2
Failure ID time [sec] 0.93 1.05 1.19

Elevator Dither
Magnitude [deg/sec] 6.00 5.00 4.00
Frequency [rad/sec] 1.6653 1.6653 1.6853

Vertical Acceleration fg's]
maximum occurrence 0.2510 0.2778 0.2726

+2a 0.1053 0.0839 0.0722
+1. 0.0412 0.0403 0.0347

mean -0.0230 -0.0032 -0.0028
-1a -0.0871 -0.0468 -0.0402

-2. -0.1512 -0.0904 -0.0777
minimum occurrence -0.3444 -0.2828 -0.2712
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Figure D.6 g-forces vs ID time for Pitch Angle Sensor failure as magnitude changs.
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Table D.7 Results of varying dither magnitude to alter Right Aileron Actuator failure identifica-
tion time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ID time [sec] 0.24 0.52 0.79 1.87

Aileron Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration (g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2o 0.3304 0.2631 0.2043 0.1476
+1v- 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-1.' -0.1416 -0.0693 -0.0538 -0.0638
-2¢ -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Right Aileron Actuator Failure
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Figure D.7 g-forces vs ID time for Fight Aileron Actuator failure as magnitude changes.
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Table D.8 Results of varying dither magnitude to alter Left Aileron Actuator failure identification
time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ED time [sec] 0.23 0.30 0.36 0.99

Aileron Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration (g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2. 0.3304 0.2631 0.2043 0.1476
+1. 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-17 -0.1416 -0.0693 -0.0538 -0.0638
-2. -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Figure D.8 g-forces vs ID time for Left Aileron Actuator failure as magnitude changes.
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Table D.9 Results of varying dither magnitude to alter Right Rudder Actuator failure identifica-
tion time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ID tim [secl 0.56 0.90 1.20 1.72

Rudder Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration [g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2.r 0.3304 0.2631 0.2043 0.1476
+1r 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-lr -0.1416 -0.0693 -0.0538 -0.0638
-2a -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Figure D.9 g-forces vs ID time for Right Rudder Actuator failure as magnitude changes.
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Table D.10 Results of varying dither magnitude to alter Left Rudder Actuator failure identifica-
tion time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ID time [see] 0.53 1.00 1.40 2.38

Rudder Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration (g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2a 0.3304 0.2631 0.2043 0.1476
+lff 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-le -0.1416 -0.0693 -0.0538 -0.0638
-2a, -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Left Rudder Actuator Failure
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Figure D.10 g-forces vs IE) time for Left Rudder Actuator failure as magnitude changes.
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Table D.11 Results of varying dither magnitude to alter Sideslip Angle Sensor failure identification
time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ID) time [sec] 1.77 2.42 2.78 3.53

Aileron Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Rudder Dither
Magnitude [deg/sec) 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration [g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2a 0.3304 0.2631 0.2043 0.1476
+1. 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-l. -0.1416 -0.0693 -0.0538 -0.0638
-2ar -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Sldelip Angle Sensor Failure
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Figure D.11 g-forces vs ID time for Sideslip Angle Sensor failure as magnitude changes.
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Table D.12 Results of varying dither magnitude to alter Roll Rate Sensor failure identification
time and horizontal 9-forces.

Trial 5 5.1 5.2 5.3
Falure ED time [sec] 0.70 0.75 0.69 0.73

Aileron Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Rudder Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration [g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2o 0.3304 0.2631 0.2043 0.1476
+1a 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-1. -0.1416 -0.0693 -0.0538 -0.0638
-2o -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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0.8 Roll Rag Senso Failure
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Figure D.12 g-forces ii ID time for Roll Rate Sensor failure a magnitude changes
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Table D.13 Results of varying dither magnitude to alter Roll Angle Sensor failure identification
time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ED time [sec] 0.80 0.27 0.22 1.51

Aileron Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Rudder Dither
Magnitude [deg/sec/ 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration [g's]
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2u 0.3304 0.2631 0.2043 0.1476
+1. 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-1. -0.1416 -0.0693 -0.0538 -0.0638
-2u -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Rol Angle Sensor Failure
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Figure D.13 g-forces vs ID time for Roll Angle Sensor failure as magnitude changes.
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Table D.14 Results of varying dither magnitude to alter Yaw Rate Sensor failure identification
time and horizontal g-forces.

Trial 5 5.1 5.2 5.3
Failure ID time [sec] 0.75 0.85 0.97 1.11

Aileron Dither
Magnitude [deg/sec] 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Rudder Dither
Magnitude [deg/secJ 6.00 4.00 3.00 2.00
Frequency [rad/sec] 3.6193 3.6193 3.6193 3.6193

Horizontal Acceleration [g's)
maximum occurrence 0.7117 0.6878 0.6187 0.5590

+2o' 0.3304 0.2631 0.2043 0.1476
+1o" 0.1731 0.1523 0.1182 0.0771

mean 0.0158 0.0415 0.0322 0.0067
-lo" -0.1416 -0.0693 -0.0538 -0.063,
-2o' -0.2989 -0.1802 -0.1399 -0.1343

minimum occurrence -0.5920 -0.5185 -0.5011 -0.4979
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Yaw Rate Sensor Failure
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Figure D.14 g-forces va ID time for Yaw Rate Sensor failure as magnitude changes.
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Appends: E. Single Failure Probability Plots

MMAE performance against single failures with the optimal dither of Equation (4.6) is pre-

sented in a more expanded form in this appendix than in Figure 4.15 on page 4-43. An average

probability of ten Monte Carlo runs is presented in each of the following plots. For convenience,

Table 3.4 is repeated below as Table E.1 so that the codes in the plots are easily interpreted as the

indicated filters. Two codes next to each other as in A2S4 indicate a secondary filter of a level-I

bank which hypothesizes two failed components.

Table E.1 MMAE Kalman Filter Codes.

Code Filter Model Represents:
FF fully functional aircraft
Al right elevator actuator failure
A2 left elevator actuator failure
A3 right aileron actuator failure
A4 left aileron actuator failure
A5 right rudder actuator failure
A6 left rudder actuator failure
S1 forward velocity sensor failure
S2 angle of attack sensor failure
S3 pitch rate sensor failure
S4 pitch angle sensor failure
S5 sideslip angle sensor failure
S6 roll rate sensor failure
S7 roll angle sensor failure
S8 yaw rate sensor failure

Each figure has fifteen averaged-probability plots. Simulations begin with the level-O bank of

filters as indicated by the single codes on the left. As the first failure is detected, a dotted vertical

line indicates the filter which holds the declared hypothesis. At that time, the MMAE switches to

the level-1 bank of filters with the filter of the first declared failure as the primary filter. All other

plots except that of the fully functional aircraft filter switch to secondary filters of the level-1 bank.

This is indicated by the vertical dash-dot line and the dual codes.

The "stepping" phenomenon especially evident in the upper right plot of Figure E.8. This is

caused by the averaging of ten Monte Carlo runs. The "steps" occur where individual Monte Carlo

runs have failure declarations and this filter is re-assigned the maximum probability.
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Figure E.1 MMAE Performance With Fully Functional Aircraft Failure at 4.00 Seconds Using
Optimal Dither.
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Induced failure in Al at 4.00 s. C.o

Average of 10 Monte Carlo runs. 2 I 6 8
11 4 6 8 10o 12

2 4 6 8 10 12 12 4 6 8 10 12
11_ _ _ _ _ _ _ _0__ _' *

0 4.22s. 4
4 6 8 10 12 12 4 6 8 10 12

01 1, - I

2 4 6 8 10 12 2 4 6 8 10 12

U•.

2 4 6 8 10 12 O2 4 6 8 10 12
2 4 61 1 1

2 4 6 8 10 12 2 4 6 8 10 12

4 6 8 10 12 2 4 6 8 10 12

-2 4 68 10 12 o• 4 6 8 1'0 12

Time [sec] Time [sec]

Figure E.2 MMAE Performance With Bight Elevator Actuator Failure at 4.00 Seconds Using

Optimal Dither.
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Induced failure in A2 at 4.00 $. , . i
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Figure E.3 MMAE Performance With Left Elevator Actuator Failure at 4.00 Seconds Using Op-
timal Dither.

E-4



IiInduced failure in A3 at 4.00i.
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Figure E.4 MMAE Performance With Right Aileron Actuator Failure at 4.00 Seconds Using Op-
timal Dither.
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Induced failure in A4 at 4.00 s.
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Figure E.5 WM Performance With Left Aileron Actuator Failure at 4.00 Seconds Using Opti-

mal Dither.
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Induced failure In A5 at 4.00 s. W!
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Figure E.6 MMAE Performance With Right Rudder Actuator Failure at 4.00 Seconds Using Op-
timal Dither.
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Figure E.7 MMAE Performance With Left Rudder Actuator Failure at 4.00 Seconds Using Op-
timal Dither.
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Induced failure in S1 at 4.00 S.
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Figure E.8 MMAE Performance With Forward Velocity Sensor Failure at 4.00 Seconds Using
Optimal Dither.
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Induced failure in S2 at 4.00 s.
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Figure E.9 MMAE Performance With Angle of Attack Sensor Failure at 4.00 Seconds Using

Optimal Dither.
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Indued faMure in S3 at 4.00$. s .!
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Figure E.10 MMAE Performance With Pitch Rate Sensor Failure at 4.00 Seconds Using Optimal
Dither.
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Figure E.12 MMAE Performance With Sideslip Angle Sensor Failure at 4.00 Seconds Using Op-
timal Dither.
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Induced failure in So at 4.00 s. cc!

Average of 10 Monte Carlo runs. 4 6 8 10 12

4101 2 4 6 8 10 1211
S.5 . .

__ ,_,___o____. !1,3.2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 '2L 4 6 8 10 12

01 !4i

2 4 6 8 10 12 -2 4 6 8 10 12

1 . (0!

2 4 6 8 10 12 '2 4 6 8 10 12
1g1

1-5 CI .51,,
2 4 6 8 10 12 4 6 8 10 12

'2 4 6 8 10 12 2 4 6 8 1'0 12

2 4 6 8 1'0 1'2 12 4 6• 8 1.0 1.2

Time [seo] Time [sec]

Figure E.13 MMAE Performance With Roll Rate Sensor Failure at 4.00 Seconds Using Optimal

Dither.
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Figure E.14 MMAE Performance With Roll Angle Sensor Failure at 4.00 Seconds Using Optimal
Dither.
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Figure E.15 MMAE Performance With Yaw Rate Sensor Failure at 4.00 Seconds Using Optimal
Dither.
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Appendix F. Dual Failure Probability Plots

MMAE filter probabilities for dual failures are presented in this appendix. The plots are

ordered according to first failure induced. For a complete explanation and plots for performance

with right elevator actuator failure induced first, see Section 4.4.

For convenience, Table 3.4 is repeated below as Table F.1 so that the codes in the plots are

easily interpreted as the indicated filters. Two codes uext to each other as in A2S4 indicate a

secondary filter of a level-1 bank which hypothesizes two failed components.

Table F.1 MMAE Kalman Filter Codes.

[Code Filter Model Represents:
FF fully functional aircraft
Al right elevator actuator failure
A2 left elevator actuator failure
A3 right aileron actuator failure
A4 left aileron actuator failure
A5 right rudder actuator failure
A6 left rudder actuator failure
S1 forward velocity sensor failure
52 angle of attack sensor failure
S3 pitch rate sensor failure
S4 pitch angle sensor failure
S5 sideslip angle sensor failure
S6 roll rate sensor failure
S7 roil angle sensor failure
S8 yaw rate sensor failure
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First failure induced Is A2 at 4.00 $.
Second failures Induced at 5.00 s.
Average of 10 Monte Carlo runs.
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Figure F.1 Dual Failure MMAE filter Probability Plots with the Left Elevator Actuator Failing
at 4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figure F.2 Dual Failure MMAE filter Probability Plots with the Left Elevator Actuator Failing
at 4.00 sec. and Each Sensor Failing at 5.00 sec.
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Figure F.4 Dual Failure MMAE filter Probability Plots with the Right Aileron Actuator Failing
at 4.00 sec. and Each Sensor Failing at 5.00 sec.
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Figure F.5 Dual Failure MMAE filter Probability Plots with the Left Aileron Actuator Failing at
4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figutre F.6 Dual Failure MMA filter Probability Plot, with the Left Aileron Actuator Faln at

4.00 sec. and Each Sensor Faln at 5.00 sec.
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FRlt filure nd Is A5 at 4.00 s.
Second failures indued at 5.00 a.

Avemrq of 10 Mone Carlo ns.
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Figure F. Dual Failure MMAE flter Probability Plots with the rig Rudder Actuator Failing

at 4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figure F.8 Dual Failure MMJAE fiter Probability Plots with the Right Rudder Actuator Failing
at 4.00 sec. and Each Sensor Failing at 5.00 sec.
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Rrst failure induced is A6 at 4.00 s.
Second failures induced at 5.00 s.
Average of 10 Monte Carlo runs.
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Figure F.9 Dual Failure MMAE filter Probability Plots with the Left Rudder Actuator Failing at
4.00 sec. and Each Actuator Failing at 5.00 sec.
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First failure Induced is S1 at 4.00 s.
Second failures induced at 5.00 s.
Average of 10 Monte Carlo runs.
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Figure F.11 Dual Falre MMA filter Probabilty Plot. with the Fo~rward Velocity SenirFalg
at 4.00 sec. and Each Actuator Faln at 5.00 sec.
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Figure F.12 Dual Failure MMAE filter Probability Plots with the Forward Velocity Sensor Failing
at 4.00 sec. and Each Sensor Failing at 5.00 sec.
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First failure induced Is S2 at 4.00 s.

Second failures induced at 5.00 s.
Average of 10 Monte Carlo runs.

1
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Figure F.13 Dual Failure MMAiE filter Probability Plots with the Angle of Attack Sensor Failing
at 4.00 se. and Bach Actuator Failing at 5.00 sec.
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Figure F.14 Dual Failure MMAE filter Probability Plots with the Angle of Attack Sensor Failin
at 4.00 sec. and Each Sensor Failing at 5.00 mc.
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First failure induced Is 63 at 4.00 s.
Second failures induced at 6.00 8.
Average of 10 Monte Carlo runs.
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Figure F.15 Dual Failure MMAE filter Probability Plots with the Pitch Rate Sensor Failing at

4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figure F.16 Dual Failure MMAE filter Probability Plots with the Pitch Rate Sensor Failing at
4.00 sec. and Each Sensor Failing at 5.00 sec.
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First faikre iduced is S4 at 4.00 a.
Second failures induced at 5.00 a.
Avemae of 10 MontM Carlo runs.
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Figure F.17 Dual Failure MMAE filter Probability Plots with the Pitch Angle Sensor Failing at
4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figure F.18 Dual Failure MMAE filter Probability Plots with the Pitch Angle Sensor Failing at

4.00 sec. and Each Sensor Failing at 5.00 sec.
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First failure induced Is $6 at 4.00 s.
Second failure induced at 5.00 a.
Average of 10 Mont Carlo runs.
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Figure F.19 Dual Failure MMAE filter Probability Plots with the Sideslip Angle Sensor Failing

at 4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figure F.20 Dual Failure MMAE filter Probability Plots with the Sideslip Angle Sensor Failing

at 4.00 sec. and Each Sensor Failing at 5.00 sec.

F-21



Fire ftare induced is SO at 4.00 s.
Second failures Induced at 5.00 a.

Averag of 10 Monls Carlo runs.
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Figure F.21 Dual Failure MMAE filter Probability Plots with the Roll Rate Sensor Failing at 4.00
sec. and Each Actuator Failing at 5.00 sec.
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Figure F.22 Dual Failure MMAE filter Probability Plot* with the Roll Rate Sensor Failing at 4.00
sec. and Each Sensor Failing at 5.00 s.
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First failure Induced Is S7 at 4.00 s.
Second failures induced at 5.00 s.
Average of 10 Monte Carlo runs.

4227T\ I : L_L 5.15 s.
2 4 6 8 10 12 12 4 6 8 10 12

0:• 4 6 8 0 120• •. 15155S..

02 4 6 8 10 12 2 4 6 8 10 12

10 .2 41 6 I 1

o4o-

0 ______4__6__.__10 _ 1< 5.808..

2 4 6 8 10 12 4 6 8 10 12

ii
* .4580.s.

02 4 6 8 10 12 2 4 6 8 10 12

Figure F.23 Dual Failure MMAE filter Probability Plot. with the Roil Angle Sensor Failing at

4.00 sec. and Each Actuator Failing at 5.00 sec.

F-24



4 .•

2 4 6 8 10 12 2 4 56 8 10 1

2 4 6 8 1'0 12 02 4 6 8 1 1

2 4 6 8 10 12 2 4 6 8 10 12
1

~3.5 o seond ailue deec.e

w2 4 6 8 10 12 2 4 6 8 10 12

.5 58

o% 4 6 8 10 12 "2 4 6 8 10 12

02) 4 6 8 10 12 02 4 6 8 1"t0" 1t2
1I 4.22)&.O."

L2 4 6 8 10 12 0 1

Oi4 6 8 0 1 2 4 6 8 O

% 4 6 8 10 12

Filgure F.24 Dugl Failure MMAE filter Probability Plots with the Roll Angle Sensor Failing at

4.00 sec. and Each Sensor Failing at 5.00 sec.
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irst failure induced Is S8 at 4.00 s.
Second failures induced at 5.00 s.
Average of 10 Monte Carlo runs.
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Figure F.25 Dual Failure MMAE filter Probability Plots with the Yaw Rate Sensor Failing at
4.00 sec. and Each Actuator Failing at 5.00 sec.
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Figure F.26 Dual Failure MMAE filter Probability Plots with the Yaw Rate Sensor Failing at

4.00 sec. and Each Sensor Failin at 5.00 sec.
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